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Abstract

A Machine Learning Framework to detect
epileptic seizures and prioritize data
transmission in Internet of Medical Things

Advisor: Prof. Dr. Denis Lima do Rosario

Co-advisor: Prof. Dr. Eduardo Coelho Cerqueira

[oMT Application, Wearable Devices; Machine Learning; Clinical Diagnostic; Data Traf-
fic Prioritization.

New technologies come on stage every day, and the technological advances en-
hance the user’s experience. In this context, wearable devices are an emerging technology
that delivers a better user experience in many daily activities. In the healthcare industry,
the Internet of Medical Things (IoMT) architecture composed of body sensors, network
communication gateways, and central servers relies on wearable devices to sense, collect,
and continuously transmit the patient’s physiological information supporting the medical
crew. In this scenario, chronic patients, such as people with epilepsy, require continu-
ous monitoring outside hospital premises. However, medical diagnosis and treatment for
syndromes like epilepsy demand data availability, transmission reliability, low network
transmission delay, and fast detection procedure. Thus, an IoMT application for epilep-
tic seizure detection processing the patient’s physiological data near the sensor device
and transmitting only the diagnostic information fulfill such requirements. In this thesis,
we propose an Machine Learning (ML) framework to identify a physiological traffic flow
among other transmitted data, proceed with a clinical diagnostic on a communication
gateway, and prioritize the data transmission in a Wireless Fidelity (WiFi) network to a
hospital cloud server. The solution consisting of two modules for clinical diagnostic and
information transmission accomplish promising results during simulations. Our proposal
achieve 91.57% accuracy in detecting and assigning a priority tag to a physiological stream,
97.76% accuracy in detecting epileptic seizures from Electroencephalography (EEG) sig-
nal, and 60% improvement in Packet Delivery Rate (PDR) for physiological data trans-
mission in a WikFi.



Contents

1 Inmtroduction ......... .ottt ittt iinnenennns
L1 OVEIVIEW . oot
1.2 Motivation and Challenges ........ ... .. .. .. .. . . .
1.3 Research Questions. ... .......... ..
1.4 ODbjJectives . ..o

1.5 Text Organization. ... .. ... ...

2 Basic Concepts. oottt ittt ittt ittt it e
2.1 Epilepsy . ..o
2.2 Communication Technologies ......... ... .. ... ... ... .. .. .. ... ...
2.3 TEEE 802.11 . o

2.4 Chapter Conclusion . ........... .. .

3 Related WorKS .o v v vttt ittt ittt i et i et ettt
3.1 Epilepsy Detection using Machine Learning..........................
3.2 Traffic Prioritization. . . . ...

3.3 Chapter Conclusion . ......... ... ..

4 Performance of Machine Learning Algorithms for Epileptic Seizure
Detection ... ..o i i i i i it

A1 OVEIVIEW . oo ottt e e e

17
17
.19
.20
.20
.20

.22
.22
.23
.25
.27



4.2 EEG Dataset .. ... p-40

4.3 Machine Learning Algorithms. ........ ... .. .. .. ... .. .. .. ... ...... p.-43
4.3.1 Decision Tree .. ... .. p. 43
4.3.2 Random Forest ........ .. .. . . .. . . . p.45
4.3.3 K-Nearest Neighbor ...... ... ... ... .. . .. . . . . ... p.45
4.3.4 Naive Bayes . ... p.-45
4.3.5 Artificial Neural Networks . ........ ... ... .. . ... ... . ..... p. 46
4.3.6 Support Vector Machine ........ ... ... .. .. .. . . .. p. 46
4.3.7 Ensemble Classifier .. ....... ... . ... ... . . . p. 47

4.4 Evaluation Metrics . ... .. p. 48

4.5 Results and Discussion. .. ........... i p.49
4.5.1 The Ensemble Classifier Results . ......... ... .. ... ... ..... p.54

4.6 Final Remarks. ... ... . . p- 55

5 Data Traffic Classification to Priority Access for Wireless Healthcare

Application ... .ot e e e e p. o7
5.1 System OVErvVIeW . ... ... p. 58
5.2 Classification Module .. ... ... . p. 58
5.3 Prioritization Module. .. ... ... ... . . p.61
5.4 Evaluation .. ... p. 63
5.4.1 Classification Module .. ....... .. .. ... ... ... . .. ... p.63
5.4.2 Prioritization Module .. ....... ... ... ... . p. 65

5.5 Final Remarks. .. ... ... . . p. 68
6 ConClUuSION . ...t i i i i i e e i i i et p. 69
6.1 Main Contributions and Thesis Summary ........................... p. 70
6.2 Outlook . ... ... .. p. 70
6.3 Published work .. ... ... . . p.71

References . ... ...ttt ittt ittt teanaenennnnennns p. 72



List of Abbreviations

ABP Arterial Blood Pressure

AC Access Category

AIRS Artificial Immune Recognition System

AIFSN Arbitration Inter-Frame Space Number

ANFIS Adaptive Neuro-Fuzzy Inference System

ANN Artificial Neural Networks

AP Access Point

AQCA Adaptive Quality of Service Computational Algorithm
AuC  Area under the ROC Curve

BLE  Bluetooth Low Energy

CART C(lassification and Regression Tree

CCN Content-Centric Network

CHAID Chi-squared Automatic Interaction Detector

CSV  comma-separated values

CSMA/CA Carrier Sense Multiple Access/Collision Avoidance
CVP Central Venous Pressure

CW  Contention Window

DCF Distributed Coordination Function



DFT
DT

ECG

Discrete Fourier Transform
Decision Tree

Electrocardiography

EC-GSM Extended Coverage Global System for Mobile Communication

EDCA
EEG
EMG
FFT
FT
FP/h
HCCA
HCF
HR
HRI
HRV
ICU
I-ICA
iEEG
loT
loMT
ID3
KNN

KPI

Enhanced Distributed Channel Access
Electroencephalography
Electromyography

Fast Fourier Transform

Fourier Transform

false positives per hour

HCF controlled channel access
Hybrid Coordination Function

Heart Rate

Heart Rate Increase

Heart Rate Variability

Intensive Care Unit

Infinite Independent Component Analysis
Intra-Cranial EEG

Internet of Things

Internet of Medical Things

Iterative Dichotomiser 3

K-Nearest Neighbor

Key Performance Indicators

LPWAN Low Power Wide Area Network

LTE

Long Term Evolution

LTE-M Long Term Evolution for Machines

MAC

Medium Access Control



MCCA MCF Controlled Access
MGH-MF The Massachusetts General Hospital-Marquette Foundation
ML Machine Learning

MLP Multi Layer Perceptron

NB Naive Bayes

NB-loT Narrow Band Internet of Things
NFC Near Field Communication

PAP  Pulmonary Artery Pressure

PCA Principal Component Analysis
PCF Point Coodination Function

PDR Packet Delivery Rate

PPG Photoplethymography

PPV positive prediction value

PRV Pulse Rate Variability

PSNR Packet Signal-to-Noise Ratio
QoE  Quality of Experience

QoS  Quality of Service

RF Random Forest

RNN Recurrent Neural Network

ROC Receiver Operating Characteristics
STA  Station

SVM Support Vector Machine

TXOP Transmission Opportunity

UCI  University of California at Irvine
WiFi  Wireless Fidelity

WHO World Health Organization

WT  Wavelet Transform

WBAN Wireless Body Area Network
WWBAN Wearable Wireless Body Area Network



Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

Figure 6

Figure 7

Figure 8

Figure 9

Figure 10

Figure 11

Figure 12

List of Figures

Wearables products, functions, and applications per sector ............ 18
EEG electrodes placement —......... .. ... .. 23
EEG from a healthy individual .......... ... ... ... ... ... ..., 24
EEG from an epileptic patient during seizure ......................... 24
IEEE 802.3 MAC architecture .......... ..., 26
Diagram for the proposed modeling ............. ... ... .. ... ..., 41
Healthy EEG vs Epileptic seizure EEG  ............................... 42
Accuracy in classifying epileptic seizures .......... ... L 51
Kappa in classifying epileptic seizures ................. ..., 52
Sensitivity in classifying epileptic seizures ................. ... ... ... 53
Specificity in classifying epileptic seizures ............ ... ... ... ... .. 53
The MAESTRO System . ... 59



Figure 13

Figure 14

Figure 15

Figure 16

Figure 17

Figure 18

Morphology of physiological information .............................. 59

Accuracy in identifying the physiological streams ..................... 64
Kappa in identifying the physiological streams ........................ 65
Three tier architecture for the prioritization module. .................. 66
Packet Delivery Rate with and without MAESTRO ................... 67
Delay for medical data with and without MAESTRO ................. 68



Table 1

Table 2

Table 3

Table 4

Table 5

Table 6

Table 7

Table 8

Table 9

Table 10

Table 11

List of Tables

Comparison of communication technologies ............ ... ... ........ 25
EDCA Parameters in 802.11 standard .......... ... ... .. .. .. ... 26

Comparison Between Different Machine Learning Algorithms to Classify
B pilepSy oo 33

The summary of data traffic classification to network access priority for

HealthCare applications ............ i 38
Classes on EEG dataset ... ... 42
Confusion Matrix ... 48
Agreement measure for categorical data. ............ ... ...l 51
Performance results and complexity for the tested models .............. 54
Accuracy and Kappa for Ensembled Models ........................... 54
Our results compared with other authors .............................. 56

Importance assignment of physiological signs .......................... 61



Table 12 Set of EDCA parameters, if STA is a sensor device



17

CHAPTER 1

Introduction

The increasing adoption of mobile technologies enhances the user's experience in
many fields. In this scenario, the use of wearable technologies presents consistent growth
year over year. The introduction of wearable technologies in the healthcare industries
opens new frontiers for better therapy follow up in the IoMT frame. Koutras et al. [1]
defines IoMT as the association of Internet of Things (IoT) technologies with health-
care services for remote patient monitoring. The IoMT refers to a set of sensor devices,
communication gateways, and service application cooperating to provide better user‘s ex-
perience during clinical diagnosis and treatment. In this work, the application scenario
considers the monitoring of chronic patients outside hospital premises, where physiologi-
cal data transmission competes for medium access with several traffic types. This chapter
introduces the concepts behind the project, in the context of IoMT applicability in the
healthcare industry.

1.1 Overview

According to a recent report, Ericsson forecasts up to 25 billions connected IoT
devices by 2025 [2]. In this context, the report classifies the IoT devices as Massive,
Broadband, and Critical [3]. Specifically, massive IoT refers to applications that require
a large number of IoT devices spread in a wide area network. On the other hand, broad-
band IoT relates to usage cases requiring throughput higher than Massive [oT. Finally,
the fundamental aspects of Critical [oT relay on low latency and ultra-high reliability
networks [2]. Hence, these different classification implies in distinct network and device’s
requirements in terms of coverage area, energy efficiency, communication reliability, data
throughput, network latency, and implementation cost.

The technological advance already provides individuals with personalized IoT de-
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vices. Seneviratne et al. [4] describes wearable devices as personal mobile devices in the
form of accessories, textiles, and patches, capable of delivering solutions that smartphones
alone cannot handle. The products depicted in Figure 1 are some current examples of
wearable devices applicable to different sectors. The increasing number of options leads
to the belief that individuals will wear multiple devices simultaneously in both profes-
sional and non-professional applications. On the one hand, professional devices require
sensing accuracy, better security schemes, low-energy consumption, low network latency,
and fault-tolerant networks. On the other hand, non-professional appliances aimed for
personal amusement do not share the same application requirements as professional usage
cases.

[ Public__| | Medical |
m Access Control, Emergency Physiological and Physiological and Gesture
% Information Services, Military, Biomechanical Biomechanical Identification,
g Access, Identity Monitoring, Monitoring, Reactive
g Customer Service. Recognition, Diagnosis, Virtual Coaching, Response.
= Rescue Tracking. Treatment, Geopositioning.
Gesture Detection.

User's
Authentication,
Customer's
Autentication,
Employee Tracking,
Service Delivery.

RFID Microchips,
Wrist Bands
Smart Eye Wear

Risk Management,

Personal Locator,
Identity Bracelet,
Smart Wearing.

Remote ECG, EEG,
EMG, Drug Delivery,
Body
Augmentation,
Posture Detection,
Vital Sign Monitor.

Smart EyeWear,
Sensor Patches,
E-Tattoos, Smart

HR, Temperature,
Location, Posture,
Activity and
Performance
Monitoring

Smart Watches,
'Wrist Bands.

Playful Show,
Track/Display
Emotions,

Smart Wearing.
Wrist Bands,

Figure 1: Wearables products, functions, and applications per sector

These new technologies drive the healthcare industry to a higher level of medi-
cal assistance, offering better therapy and life quality for patients. In this context, older
adults with chronic conditions require continuous monitoring for prolonged periods. How-
ever, monitoring patients in hospitals and clinics presses for resources in the healthcare
industry. Thus, IoT devices became an alternative for monitoring patients for more pro-
longed periods outside hospital premises. In this way, the [oMT consisting of professional
applications, services, and platforms for telemedicine attracts the research attention from
the healthcare industry [5, 6, 7, 8]. Hence, IoMT relies on wearable devices to continu-
ously sense, collect, and transmit biometry data, leveraging for an onboard radio wireless
facility to communicate with a gateway, which in turn delivers the collected data across
the internet to an e-Health system [9, 10, 11].
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1.2 Motivation and Challenges

Older adults with chronic conditions, such as diabetes, cardiovascular diseases,
and epilepsy, requiring continuous monitoring rely on IoMT to improve the Quality of
Service (QoS) within healthcare assistance. In this context, wearable devices consisting
of ToMT appliances to collect vital signs implement a choice of short-range wireless tech-
nology to transmit the information [10, 11]. Typically, the transmission using short-range
communication technologies such as Bluetooth Low Energy (BLE), Near Field Commu-
nication (NFC), and WiFi are prone to several interference sources. The coexistence of
technologies sharing the same frequency spectrum [12] and collisions [13], are examples
of interference sources during transmission. These interference sources reduce the QoS
perceived within the IoMT application. Thus, processing the vital sign information near
the sensor devices, e.g., in the communication gateway is an alternative to bypass some of
the interference sources and address the near-real-time requirement for IloMT applications
[14, 15, 16].

Typically, a time series with samples of the monitored vital sign represents the
individual’s physiological information. The continuity nature of physiological data collec-
tion drives the requirement for continuous analysis. In this context, the introduction of
an automatic analytical technique is paramount for the application QoS. Hence, ML con-
stitute a promising technique for pattern recognition, and clinical diagnostic [17, 18, 19].
Additionally, the application of an ensemble classifier potentially enhances the ML per-
formance [20]. Moreover, executing the pattern recognition and diagnostic in the commu-
nication gateway minimizes the data transmission to the cloud server [10] and the risk of
data leakage [5].

The physiological information exhibits diverse characteristics. In this sense, the
[oMT devices collect the respective vital sign using different methods, sensor placement,
and collection frequency. The differences implicate in differentiated volumes of data to
process and transmit. Moreover, each vital sign has relative importance for the clinical
diagnostic. Heart Rate (HR) monitoring is predominant for a patient with a cardiological
condition, while pulmonary pressure would be more critical if the patient has a lung
condition. Hence, each physiological information requires a distinguished processing and
transmission QoS [21, 22], depending on the patient’s condition.

The strict QoS requirement ensures accurate information for the medical staff.
[21, 22]. Nevertheless, wearable medical devices transfer the collected information through
a shared wireless network infrastructure [10, 17, 23]. In this sense, the transmission of
physiological data for healthcare applications should prevail over regular internet traffic.
Thus, it is essential to classify (in a non-intrusive manner) the diverse healthcare traffic
flows transmitted from wearable devices in a shared wireless infrastructure [21].
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1.3 Research Questions

a. How to use an ML model to address clinical diagnostic and priority transmission in an
[oMT scenario with multiple competing applications and traffic characteristics?

b. What are the ML algorithms with less computational complexity and good accuracy
for a specific clinical diagnostic, e.g., epilepsy seizure detection?

c. How to provide better QoS in terms of accuracy in detecting epileptic seizures and
lower latency in transmitting the diagnostic information to the hospital crew in an loMT
application scenario?

1.4 Objectives

In this thesis, we propose an ML framework to identify the physiological traffic
pattern, proceed with the clinical diagnostic based on the vital sign, and prioritize the data
transmission to hospital cloud servers in an [oMT application scenario. Addressing these
issues would push IoMT applications to a higher level of user experience. Additionally, our
proposal minimizes data interception risk as it reduces data exposure in wireless medium
access. This research work addresses the following objectives:

e Analyze the ML techniques embeddable in IoMT architecture for use in healthcare
solutions.

e Identify applicable ML algorithms for diagnostic procedures, e.q., epileptic seizure
detection, from an communication gateway perspective.

e Identify the traffic generated by IoMT medical devices, use the physiological infor-
mation for clinical diagnostic, and prioritize the diagnostic data transmission to the
hospital servers in a scenario of competing for network medium access.

1.5 Text Organization

We present the contributions to this work based on three achievements. First,
we present the results of our analysis involving the ML techniques to detect epileptic
seizures. Second, we present our strategy to prioritize the transmission of the diagnostic
results, based on the scenario of devices and applications competing for medium access
in the WiFi network. Finally, we configure the two individual solutions together in the
same framework. The remaining of this document is structured as follow:

e Chapter 2: Introduces the theoretical references explored in this work.

e Chapter 3: Presents and analyses the related works.
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e Chapter 4: Analyses the ML methods applied to epileptic seizure detection.

e Chapter 5: Defines a method to prioritize medical information transmission on a
wireless channel.

e Chapter 6: Concludes this work and defines future research directions.
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CHAPTER 2

Basic Concepts

2.1 Epilepsy

Epilepsy is a brain syndrome with different disturbing causes characterized by a
non-provoked predisposition to recurrent seizures. It affects the human neurobiological
and cognitive functions with psychological and social consequences. According to the
World Health Organization (WHO), epilepsy affects from 0.4% to 1% of the global popu-
lation, and about 70% of patients respond well to treatment [24, 25]. When an individual
suffers the first seizure, it is highly probable that a recurrence follows within two years -
40% to 50% chance [26]. Thus, patients who manifested a non-provoked seizure require
monitoring for epilepsy confirmation and classification.

During the diagnostic procedures, the EEG is the leading medical test to conclude
if the patient has epilepsy [26]. In this context, ambulatory and video EEG are examples
of non-invasive methods to register brain activity. The ambulatory EEG consists of a
set of electrodes fixed on the patient’s scalp at predefined positions [27]. Specifically, the
electrodes placement follow the 10-20, 10-10, or 10-5 international system as illustrate
in Figure 2 [28]. Alternatively, the intracranial EEG provides an invasive method that
adds value to the diagnostic procedure in patients with surgery indication [26]. Signal
amplifiers and computer software register the brain’s activity as a temporal series of the
potential difference between each pair of electrodes. During diagnostic procedures, the
medical crew conducts a complete anamnesis and physical examination to conclude for a
therapy [29]. The findings during diagnostic procedures update the patient’s electronic
medical record.

Qaraqe et al. [27] describe that relevant brain activity for clinical analysis lies
in the range from 0.5 to 50 Hz and seizure activity is within the range from 0.5 to 25
Hz. The brain activity waveform has a ¢ component when the dominant frequency is
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Figure 2: EEG electrodes placement. Black circles indicate 10-20 electrodes placement;
gray circles indicate the additional 10-10 electrodes placement; red, blue, and green posi-
tions represent the placement where neighbor points can not overlap; the gray positions
represents the additional 10-5 electrodes that interfere with neighbor positions. Jurcak et
al. 28]

f < 4Hz, a 0 component with 4 < f < 8Hz, an a component with 8 < f < 12HZ, a
f with 12 < f < 30Hz, and a v with f > 30Hz [27]. The dominant frequency is the
one which carries the highest energy within the spectrum [30]. Figure 3 exhibits a typical
EEG segment noted from a healthy individual according to the analysis from an expert.
A biochemical process initiated at cell level leads to an abnormal brain activity that
triggers epileptic seizures [26]. Figure 4 exhibits the abnormal brain behavior, noted from
an epileptic patient after expert's analysis. The spike-and-wave characteristics depicted
between 40 msec and 70 msec in Figure 4 associates the seizure activity with genetic-origin
epilepsy [26].

2.2 Communication Technologies

Alam et al. [11] explains that communication is a key issue in the IoT con-
text. The combination of short-range technologies, e.g., NFC, BLE, WiFi, and ZigBee,
with long-range, e.g., LoRa, Sigfox, 4G, and NB-IoT, can achieve both efficiency and
cost-effectiveness depending on the IoT application scenario. Baker et al. [31] discuss
communication technologies in the context of healthcare applications. Specifically, the
survey explores the frequency band, data rate, coverage range, and the power consump-
tion for each technology. The investigated technologies includes operation in both licensed
and unlicensed spectrum, i.e., either require or not a previous negotiation with authorities
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Table 1: Comparison of short-range and long-range communication technologies, adapted
from Ahad et al. [34]

Technology Frequency Spectrum Data Rate Coverage | Power Usage

NFC 13.56 MHz Unlicensed | 100-400 kbps 10 cm Very Low
Short- Range BLE 2.4 GHz Unlicensed | 1 Mbps 0.1 Km | Low

Wi-Fi 2.4 GHZ and 5 GHz | Unlicensed | 54 Mbps - 1 Gbps | 50 m Low-High

ZigBee 2.4 GHz Unlicensed | 250 kbps 10-100m | Very Low

LoRa 433/868/915 MHz Unlicensed | 50 kbps 25 Km Low
Long-Range Sigfox 868/915 MHz Unlicensed | 300 bps 50 Km Low

4G 800, 1800, 2600 MHz | Licensed 12 Mbps 10 Km High

NB-IoT 900 MHz Licensed 250 kpbs 35 Km High

for the right to access a frequency band.

It is notable in Table 1 that technologies sharing the spectrum may interfere with
each other. Technologies transmitting in the unlicensed spectrum with low or very low
energy consumption offer few possibilities to provide QoS for critical [oMT devices. For
instance, LoRa technology implements a pure ALOHA-based medium access protocol [32].
Thus, LoRa is not indicated for critical applications requiring real-time data transmission
[33]. Moreover, Kim et al. [12] discusses the coexisting problems involving ZigBee and
WiFi. Specifically, the authors emphasize the interference aspect in the coincident chan-
nels, which increases the collisions and reduces the QoS. In this scenario, Kim et al. [12]
propose an algorithm to control the traffic load in the WiFi network. In an IoMT context,
where a chronic patient require monitoring outside hospital premises, e.g., a home care
facility, the WiFi technology offer good balance between coverage, power usage, and data
rate to transmit physiological information.

2.3 1IEEE 802.11

The TEEE 802.11 set of amendments define the standard for wireless communica-
tion in a local area network, specifying the network medium access control and physical
layers [35]. The standard allows devices to operate in any compatible network, providing
authentication methods, dynamic frequency selection, QoS mechanism, operating in the
presence of coverage overlapping, and more. The standard defines two MAC architectures,
respectively, for non-directional and directional multi-gigabit Station (STA). In this work,
we focus on non-directional multi-gigabit STA and follow the MAC architecture exhibit
in Figure 5 extracted from the IEEE standard [35].

The primary access methodology implemented in this architecture is the Carrier
Sense Multiple Access/Collision Avoidance (CSMA/CA). In this methodology, the STA
sense the medium before trying to transmit. If the channel is idle, then the STA starts
transmitting; otherwise, it will remain on hold expecting the current transmission to finish.
After each successful transmission, the STA backs off for a random period before trying
to transmit again. The 802.11 standard combines contention-based and contention-free
methodologies to provide QoS for the STA. In the newest amendments such as 802.11ah,
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the Enhanced Distributed Channel Access (EDCA), which is a contention-based method,
became the most adopted implementation.

Required for Required for Prioritized
Parameterized Qa3 Senvices
QoS Services
Required for Contentio / Required for
SicC Sbes bron o Mesh Coordination Function (MCF) Controlled Mesh
STA, optional ptherwise - Services
A

G
Hybrid Coordination Function (HCF) //

M UA P Used for Contention
\ / 0 Services, basis for

= & PCF, HCF and MCF
I 1
| Point HCF
] HCF . MCF
I Cot;gir:na | Controlled C(iir::r?n Controlled
MAC | Eanctiss: | Access Rz Access
extent I| PCF) | (HCCA) (EDCA) (MCCA)
1
| S

Distributed Coordination Function (DCF)

DSSS, OFDM, HR/DSSS, ERP, HT, VHT or TVHT
PHY

Figure 5: Non-directional multi-gigabit stations MAC architecture. [35]

The EDCA method implements eight user priorities distributed in four Access
Category (AC) queues, combining three parameters: the Contention Window (CW),
the Arbitration Inter-Frame Space Number (AIFSN), and the Transmission Opportu-
nity (TXOP) [35]. The Access Point (AP) announces these parameters for the STA. The
CW is the random time interval that an STA waits before starts transmitting when iden-
tifies the channel as idle. The CWmin and CWmax respectively refer to the minimum
and maximum values for the CW. The AIFSN defines the time interval between two con-
secutive transmissions from the same STA. The AP keeps this value lower to increase the
successful transmission probability for delay-sensitive STA. The TXOP scheme allows the
STA to transmit multiple frames after granting medium access, given the condition of
not exceeding the TXOP limit [36]. The summary of possible parameters in the EDCA
implementation is an exhibit in Table 2

Table 2: EDCA Parameters in 802.11 standard. [35]

Transmit Queue Transmit Queue
Priority | User Priority AC (do122Alternate-EDCAActivated | (dot11AlternateEDCAActivated Designation CWmin CWmax AIFSN | TXOP limit
false or not present) true)

Lowest 1 AC_BK BK BK Backgroud - S—
) ACBK BK BK Backgroud aCWmin aCWmax 7 0
0 ACBE BE BE Best Effort — N )
3 ACEBE BE BE Bost Bffort aCWmin aCWmax 3 0
1 ACVI i AV Video (alternate) | | . ; N :
5 ACVI VI VT Video (primary) (aCWmin+1)/2-1 ACWmin 2 0
6 ACVO VO VO Voice (primary) P y . . ;

Highest 7 ACNVO VO A VO Voice (alternate) (aCWmin+1)/4-1 | (aCWmin-+1)/2-1 2 0
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2.4 Chapter Conclusion

The concepts explored in this chapter helps the understanding of the problems
we address in this work. Epilepsy affects a significant number of individuals, in the order
of 1% of the world population. Explaining the brain syndrome dynamics and the clini-
cal diagnosis procedure helps to understand the importance of accurate and convenient
methods to follow up on the therapy. When it comes to communication, many technolo-
gies propose a solution in the context of IoT or IoMT. However, only a few technologies
provide features to enhance the QoS for delay-sensitive applications. In this scenario,
WiFi is popular and affordable in many use-cases outside hospital premises. The next
chapters explore these background concepts to come-up-with an integrated solution to
detect epileptic seizures and transmit the relevant information with higher priority in a
shared WiFi network.
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CHAPTER 3

Related Works

This Chapter introduces the works related to this research project highlighting
the state-of-the-art and open issues. In Section 3.1, we explore the general application
of ML for epilepsy detection. Specifically, we analyze the ML algorithms trained to
detect epileptic seizures from physiological signals such as EEG, Electrocardiography
(ECG), and Photoplethymography (PPG). Moreover, the related works combine different
physiological features in the time domain, frequency domain, or hybrid approaches. In
Section 3.2, we discuss the context of patient monitoring outside hospital premises. In
this scenario, a medical device from the IoMT application competes for medium access in
the wireless network with a generic STA. We then analyze the methods and techniques
defined in the wireless network standards in the context of proposed improvements for the
medium access control. The two sections aim to establish a baseline for our proposition.

3.1 Epilepsy Detection using Machine Learning

Many of the researches discuss in this section base the investigation on the dataset
collected initially by Andrzejak et al. [37]. Investigating the dynamic characteristics of
brain activity, Andrzejak et al. recorded the EEG time series from healthy individuals
and epileptic patients. The recording from healthy patients considered the ambulatory
EEG obtained from the scalp, with electrodes placement following the 10-20 international
system (see Figure 2). The authors noted that healthy volunteers were relaxed and awake
during EEG recording. Recording from epileptic patients considered intracranial elec-
trodes, implanted in patients with surgical indication. The intracranial electrodes place-
ment considered the Intra-Cranial EEG (IEEG) collection from a tumor region and its
opposite (healthy) brain hemisphere. In such a scheme results in five different EEG time
series: (1) Healthy patients recorded with their eyes closed; (ii) Healthy patients recorded
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with their eyes open; (iii) Epileptic patients recorded from the epileptic zone during a
seizure; (iv) Epileptic patients recorded from the epileptic zone during a seizure-free pe-
riod; (v) Epileptic patients recorded from the healthy brain zone (opposite hemisphere
from epileptic zone).

Giiler et al. [38] analyze the EEG dataset [37] and classify epileptic seizures us-
ing Recurrent Neural Network (RNN) with Lyapunov exponents trained with Levenberg-
Marquardt algorithm. Lyapunov exponents are quantitative measures used in many bi-
ological nonlinear systems to characterize its dynamical properties. Biological nonlinear
systems include heartbeats dynamics [39] and also brain activity behavior [37]. Giiler
et al. [38] considers three EEG time series out of the five available in the Andrzejak et
al. dataset. Specifically, the subsets include healthy individuals with their eyes open,
epileptic patients recorded during a seizure-free interval, and epileptic patients recorded
during a seizure.

Giiler et al. [38] analysis consider a rectangular window consisting of 256 discrete
data points for each EEG signal. Following the investigation, the study calculates the
Lyapunov exponents from the recognized sign within the window. The study reduces the
dimensionality of the Lyapunov exponents selecting four statistical measurements: (%)
Mean of the absolute values of the Lyapunov exponents; (%) Maximum of the absolute
values of the Lyapunov exponents; (iii) Average power of the Lyapunov exponents; (iv)
Standard Deviation of the Lyapunov exponents.

The proposal applies these four statistical features to train the RNN and achieves
96.79% of positive epilepsy classification. However, the calculation of the Lyapunov expo-
nents is time-consuming, and noise in the time series has adverse effects in the exponent’s
estimations [40]. Finally, the computational cost of training the RNN using the Levenberg-
Marquardt algorithm is O(n?), where n is the number of neurons in the hidden layer of
the RNN. The asymptotical complexity can be reduced to O(n?) using parallel processing,
such as presented by Bilski et al. [41].

Giiler and Ubeyli [42] propose the use of Wavelet Transform (WT) for feature ex-
traction and Adaptive Neuro-Fuzzy Inference System (ANFIS) for epilepsy classification.
WT is a variation of Fourier Transform (FT) to analyze signal frequency components
with the advantage of removing the noise while preserving features. ANFIS combines the
characteristics of both Artificial Neural Networks (ANN) and Fuzzy systems. Specifically,
ANFIS uses ANN to determine fuzzy sets and rules.

The analysis in Giiler and Ubeyli [42] considers all five EEG time series available
after Andrzejak et al. [37]. The application of WT for feature extraction provides better
precision compared with the research from Giiler et al. [38]. In this approach, this model
achieves a precision of 98.68% to classify epilepsy. Analyzing the computational complex-
ity, Munoz et al. [43] propose the implementation of WT with O(n) time complexity,
where n equals to the number of signal samples. On the other hand, ANFIS has the ad-
vantages of both fuzzy logic and ANN approaches. Still, it is computationally expensive
and complex, typically O(2"), where n represents the number of data points to learn.
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Hence, it is recommended only for scenarios with high computing resources availability

[44].

Polat and Giines [45] propose a hybrid system based on Decision Tree (DT)
and Fast Fourier Transform (FFT) for epilepsy detection. In this approach, the authors
consider all five EEG time series available after Andrzejak et al. [37]. The proposal
extracts 129 features from the EEG signal using FFT. Afterward, the authors apply this
feature vector to train a DT model to detect epileptic seizures [45]. Furthermore, the
training procedure considers cross-validation 10-fold.

The FFT is a well-known algorithm to compute FT in O(n log n) time complex-
ity, where n equals to the number of samples of the input signal. The FFT performs
better than classical Discrete Fourier Transform (DFT) algorithms with computational
complexity of O(n?) [46]. For DT, Choromanska and Langford [47] propose an algorithm
to train and test multiclass trees with O(log k) computational complexity with & equals
to the number of classes. Concluding, the method from Polat and Giines [45] achieve an
accuracy of 98.72% to classify epilepsy analyzing the EEG dataset from Andrzejak et al.
[37].

In a new analysis, Polat and Giines [48] consider Welch FFT for feature extrac-
tion, Principal Component Analysis (PCA) for dimensioning reduction, and Artificial
Immune Recognition System (AIRS) with Fuzzy resource allocation mechanism. The
three-tier approach initially considered 129 features for classification, lately reduced to
five remarkable characteristics after PCA application. In this analysis, the authors in-
vest in cross-validation 10-fold and train-test split, considering 50%-50%, 70%-30%, and
80%-20% proportion.

This approach with Welch FFT, PCA, and AIRS achieve 99.81% of accuracy con-
sidering 50%-50% train-test split proportion and 100% for all other training strategies to
detect epileptic seizures based on EEG data [48]. As discussed before, the computational
complexity of the FFT computation is O(n log n), with n equals to the number of samples
of the input signal. Dimensioning reduction applying PCA typically has computational
complexity of O(min/p* n®]) [49], considering that n is the number of data points and
p equals to the number of features. Fuzzy Logic presents O(2") complexity as discussed
before.

Hosseini et al. [50] propose a binary classification for seizure detection considering
normal individuals and epileptic patients. The authors propose a three-tier system and
rely on the higher processing capabilities of the cloud servers to detect epileptic seizures
in real-time. The system architecture considers (i) an iEEG sensor connected to a mobile
device for data acquisition on the first tier; (i) a set of notebooks or home-gateways
performing feature extraction and classification on the second tier; (7ii) A cloud server
for big data processing on the third tier.

The iEEG enhances signal acquisition and is less prone to interference. It is an
alternative to ambulatory EEG, as the latest is subject to errors due to noise, motion
artifacts, and low conductivity in the scalp. Right after the data acquisition in the first



3.1 Epilepsy Detection using Machine Learning 31

tier, the mobile phone transmits the EEG data to the connected home-gateway in the
second tier. In the home-gateway, the signal flows through a filtering stage using WT,
a dimensioning reduction applying Infinite Independent Component Analysis (I-ICA),
and classification using Random Subspace with Support Vector Machine (SVM). This
approach applies the ML algorithm in the second tier. Additionally, the system forwards
the information to the third tier for further processing and data storage in the cloud center.
This proposal from Hosseini et al. [50] achieve 95% of accuracy. As discussed before, WT
complexity is O(n). The algorithm for I-ICA dimensioning reduction is O(KN), where K
and N are the number of hidden sources and the number of data points, respectively. The
implementation of SVM is kernel-dependent, and its time complexity is O(n®), where n
equal the number of data points to classify [51].

De Cooman et al. [52] discuss the possibility of epileptic seizure detection using
ECG instead of EEG. The ECG signal is easier to acquire compared to EEG, and an
increase in the HR can indicate seizure for epileptic patients [52]. The earlier detection
could alert the medical crew and the patient’s relatives for immediate assistance. Thus,
the authors propose an algorithm to detect Heart Rate Increase (HRI) based on single
ECG and SVM for epilepsy classification. The dataset considers 127 complex partial and
secondary seizures recorded from 17 patients.

The first step in the methodology by De Cooman et al. [52] is R peak detection
from the ECG signal. Two consecutive R peaks define the HR. The detection algorithm
computes the median of 15 consecutive HR to minimize the effect of small peaks. Then,
inspects the gradient of 10 consecutive HR to compute the HRI. In the next step, the
algorithm extracts the characteristic from the HRI, such as HRI peak, the time interval
of the HR, and the maximum HR gradient. The approach considers the SVM algorithm,
trained for all individuals in the dataset, but leaving one out for validation. This approach
achieves an accuracy of 81.89% to detect epilepsy seizures. The algorithm to extract the
HRI feature has a computational complexity of O(n), where n is the number of HR
measurements. However, the SVM algorithm has a computational complexity of O(n?),
such as discussed before.

Vandercasteele et al. [53] explore the use of ECG and PPG sensors for epilepsy
detection. This approach focuses on the accuracy and convenience of using wearable
devices as an alternative to hospital equipment for long periods. The analysis considers
the physiological information from 11 patients using wearable ECG devices and wrist-band
PPG devices. The authors compare the results of their experiment with the sensitivity of
an ambulatory ECG hospital system. The dataset counts for 701 hours of recording with
47 registered seizures.

The seizure detection methodology in Vandercasteele et al. [53] shares the same
methodology from De Cooman et al. [52]. Additionally, the analyses submitted both
Heart Rate Variability (HRV) and Pulse Rate Variability (PRV) to the detection algo-
rithm. The evaluation criteria considered sensitivity, false positives per hour (FP/h),
positive prediction value (PPV), and Receiver Operating Characteristics (ROC) curve.
This approach achieves a sensitivity of 70% for wearable ECG sensor data, but only 32%
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for PPG sensor data. Comparatively, the hospital ECG system achieves 57% of sensitivity.

In Neto et al. [20], the authors explore the application of classifier committee. In
this ML technique, a classifier combines the results of other stand-alone classifiers to reach
a resulting consensus. The authors explore the results for K-Nearest Neighbor (KNN),
SVM, DT, Naive Bayes (NB), and Random Forest (RF), with the Bagging algorithm
implementing the committee. Neto et al. [20] reduces the dataset dimensionality using
PCA to minimize execution time and memory consumption during the training-testing
process. The analysis considers the Area under the ROC Curve (AuC) probabilistic
performance indicator to evaluate the model‘s outcome. The AuC crosses the true-positive
with the false-positive rates achieving results between 0 and 1. Thus, the higher the AuC
better the model to correctly predict the outcome.

Initially, Neto et al. [20] manipulate the dataset to convert from time to frequency
domain applying FT. The application of PCA reduces the dataset dimension by 91%
to 270,002 attributes. Following, the authors provide a parameter grid for each stand-
alone algorithm to come up with the best outcome. In this context, the KNN algorithm
obtained the best AuC result of 0.5586. Classification using SVM achieves 0.5 with kernel
function, DT achieves values around 0.7, and the NB algorithm trained with 10-fold cross-
validation achieve AuC of 0.33. RF is a collection of DT and in this concept, Neto et
al. [20] consider the forest with 1,000 up to 4,000 DT achieving AuC of 0.5279 with
3,000 trees. The classification committee approaches two scenarios. The first scenario
concerns a homogeneous voting system combining KNN stand-alone results. The second
scenario relates to a heterogeneous voting system combining KNN, DT, and NB results.
The authors present that the homogeneous committee achieves AuC of 0.7486 and the
heterogeneous committee achieves near AuC equal to 0.8

Table 3 summarizes the state-of-the-art analysis reported in this research work.
It associates each proposal with their respective computational complexity. The com-
putational complexity and feature selection are key factors determining the applicability
of such ML algorithms in a wearable device context [54]. The computational complex-
ity is directly related to the usage of scarce energy, computing, and storage resources of
wearable devices.

Epileptic seizure detection application running on wearable devices context re-
quire low complex ML algorithms. This requirement copes with the device’s limited
processing capability, storage capacity, and battery lifetime. In this context, this analysis
concludes that despite the excellent accuracy, not all ML investigated in related works
fulfill the constraints imposed by wearable device systems. Besides, general architectures
propose data transmission to the cloud servers. Thus, data transmission is an energy-
demanding task subject to communication delays and interruptions.
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Table 3: Comparison Between Different Machine Learning Algorithms to Classify Epilepsy

Author Dataset Algorithms Complexity  Accuracy (%)  AuC
Giler e al. [39] EEG [37] RNN with LE O(n?) 96.79 -
Giiler and Ubeyli [42] EEG [37] X\?FIS OO (% 98.68 -
.. FFT O(n lg n) -
Polat and Giines [45] EEG [37] DT O(lg k) 98.72
Welch FFT O(n log n) -
Polat and Giines [48] EEG [37] PCA O(minp®,n?]) 100.00
AIRS with Fuzzy o)
WT O(n)
Hosseini et al. [50] EEG [50] I-ICA O(kn) 96.00
SVM O(n?)
De Cooman et al. [52]  ECG [52] g%fmm 00 (Z@)) 81.89 -
Vandercasteele et al. [53] ECG [53] gg&IEXtht OO (Zz) ) 70.00 N
Neto et al. [20] EEG  Classification Committee - - 0.7486

3.2 Traffic Prioritization

Typically, healthcare systems based on IoMT devices rely on a three-tier archi-
tecture: the body sensors, a communication gateway, and a cloud server. In such archi-
tecture, the body sensors and the communication gateway constitute an IoMT network.
The cloud server provides a higher capacity for data storage and processing. The body
sensors collect physiological data and transmit it through the gateway to the cloud servers
using wireless, wireline, or a mixture of these two technologies. The network architecture
and application scenarios were well explored in Kraemer et al. [10].

Hassan et al. [23] proposes the integration of Wireless Body Area Network
(WBAN) and TCP/IP as communication technologies in an IoMT network transmit-
ting to a cloud server. The authors address the packet loss problem adding an adaptive
streaming method to adjust the network data rate based on the number of users and
packet re-trans-missions. The concept behind Hassan et al. [23] consists of a four-layer
architecture: perception layer, network layer, cloud computing layer, and application
layer. The sensors constitute the most fundamental elements in the perception layer,
transmitting data to the coordinator in the network layer. The coordinator operates with
both Zigbee and TCP/IP protocols, sending data to the servers in the cloud computing
layer. The proposal integrates a Content-Centric Network (CCN) to distribute the con-
tent to multiple destinations in the application layer. Each target application presents its
requirements in terms of expected latency, bandwidth, broadcast or multicast capability,
and other traffic characteristics. Simulations confirmed that this strategy reduces traffic
delay and jitter to transmit a large volume of medical data in real-time.

The advances in medical therapies enhance the interest in QoS requirements for
providing service to healthcare applications. Specifically, real-time applications such as
human physiology monitoring, transmitting information through wireless medium access,
require low latency network and energy-efficient protocols [55]. According to Yessad et
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al. [55], different vital signs need different QoS, and the network design to address the
requirements is challenging due to many factors. In this sense, that work surveys recent
publications addressing QoS requirements and propose an analytical model to compare
the system’s performance. The authors enumerate the considerations for the design of
an optimized QoS for the IoMT network. Notably, the authors discuss the challenges
involving traffic types associated with heterogeneous sensor nodes, prioritization between
the distinct traffic types, transmission delay, energy consumption, and attenuation in the
transmission path.

Yessad et al. [55] analyses the research articles proposing multi-sink and single-
sink approaches to address network reliability. Multi-sink protocols aim to improve net-
work reliability for sending the data packets to several sinks. Single-sink protocols apply
multi-hop routing alone or combined with single-hop to enhance reliability. The surveyed
articles proposing multi-sink protocols define two or more priority queues to transmit
data. The proposals with single-sink protocols focus on latency reduction identifying the
best route for the traffic and seeking energy-efficient strategies. Finally, Yessad et al. [55]
applies the Markov chain to compute the probability of route rupture and transmission
success of each model. The authors conclude that multi-sink approaches supersede single-
link proposals when reliability and transmission delay improvement are critical aspects.

The continuous transmission of physiological data originated in wearable devices
faces some constraints. Restrictions associated with interference, collision, and bandwidth
limitation increases the competition for medium access in the wireless network. Hence,
transmitting only relevant information for clinical diagnostic constitutes an alternative
to bypass the restrictions. In this context, Vergiitz et al. [17] analyses the statistical
information carry on the physiological data to send an alerting beacon to a cloud server.
Such analysis aims to prioritize the transmission of the medical alert.

The proposal in Vergiitz et al. [17] considers a system architecture with three
stages. In the first stage, a group of wearable sensor devices attached to the patient’s
body collects physiological information. A coordinator in the second stage accounts for
receiving data from the body sensors and process it locally. Finally, in the third stage, the
coordinator sends the medical alerts to a WiFi access point to reach the healthcare center.
The data processing in the second stage performs a statistical analysis of the physiological
data and identifies respiratory frequency alteration in patients suffering from pulmonary
edema. This work considers the return rate, autocorrelation, variance, asymmetry, and
kurtosis as relevant statistical indicators for such an analysis.

After identifying the respiratory frequency alteration, the coordinator needs to
transmit the alerting beacon in near real-time to the healthcare center. However, the
transmission in the WiFi network offers few QoS possibilities as explained in Section 2.
Specifically, the IEEE amendment prioritizes voice and video over other traffic types. In
this context, medical alerts do not have any specific transmission queue to grant prior-
itization. The proposal in Vergiitz et al. [17] combines the IEEE 802.11 EDCA access
category to provide higher priority to the medical alert. Precisely, the authors propose
a new access category referring to medical alarms. Thus, for this new access category,
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they reduced the interframe interval and contention window in the WiF'i network. Hence,
medical alerts gain more airtime when compared with voice and video data packets.

The investigation of QoS metrics for healthcare applications is the subject of
research for Park et al. [21]. The authors discuss the influence of the packet error rate
in the wireless network transmission for the applicability of the received signal for the
diagnostic purpose. Specifically, the error rate cause missing packets, missing packets
cause signal distortion, and this aspect impact negatively the received signal. Moreover,
the distorted signal may not carry enough information for the healthcare application to
conclude its clinical diagnosis. In this context, Park et al. [21] proposes a QoS metric for
an ECG system transmitting data through a wireless network. Hence, the authors quantify
the preserved diagnostic information perceived at the receiving end of the transmission.

The starting point for Park et al. [21] research defines the maximum latency
allowed for medical applications in the context of a hospital network. In this scenario,
traffic type ranging from diagnostic telemetry to guest access in the hospital network
accepts delay between 200ms to 1s. To define an alternative metric, the authors consider
the main characteristics of an ECG signal for medical analysis. Initially, the proposal
defines feature vectors representing the original and the received signal. Then, this work
computes the weighted diagnostic distortion as a factor of the normalized difference vector
and the diagonal matrix of features weights. Finally, the authors simulated the model
using three ECG features, named, RR interval, QRS+ amplitude, and QRS- amplitude,
with a weighted diagonal matrix equal to [2 2 2]. The research conclusion indicates an
essential difference between the packet error rate and the medical QoS metric, requiring
more research efforts in the subject area [21].

In practical applications, most of the internet traffic occurs in bursts. In this
scenario, a certain level of congestion affects the network QoS in some moments. Patel
and Choudhary [56] study the traffic delay over congested WLAN 802.11n in the context
of video transmission prioritization. Specifically, this research manipulates the access
categories queues in the EDCA Qos method. The research from Patel and Choudhary
[56] proposes a cross-layer mapping to provide QoS for video stream employing EDCA
function..

In the 802.11 networks, the heavy traffic scenarios cause packets discarding.
Specifically, if any of the access categories queues run out of capacity, implicates new
incoming packets to be dropped. The cross-layer mapping algorithm proposed in Patel
and Choudhary [56] dynamically accommodates the video packets to an empty access
category queue in the advent of network congestion. The proposal consists of retriev-
ing the I/P/B video slice from the Medium Access Control (MAC) layer and distribute
the information in three of the access categories queues according to the congestion lev-
els. The I-frame always goes to the video queue. The cross-layer algorithm diverts the
P/B-frame to the best effort and background queues once the video queue is congested.
The authors evaluate this proposal considering the end-to-end delay, throughput, and
Packet Signal-to-Noise Ratio (PSNR). The researchers conclude that adaptive cross-layer
mapping performs better than the static cross-layer in terms of delay, jitter, and PSNR.
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Many applications share the same frequency spectrum, and a certain level of
interference in the network transmission is expected. For instance, ZigBee and IEEE
802.11 channels overlap operating at 2.4 GHz. In this context, the higher power level from
the WiF1i causes ZigBee channels to back off [12]. ZigBee technology provides connectivity
between the medical body sensors and a gateway. The gateway aggregates the information
from various medical body sensors and forwards the data to a health monitoring system
through a WiFi access point. The access point concentrates traffic from the medical body
sensors and background devices, such as internet navigation, file transfer, peer to peer
connection, and audio and video streamings. The proposal from Kim et al. [12] consider
delaying background network traffic to increase the QoS for medical data streams. The
strategy implementation proposes an algorithm to minimize the traffic generated on delay-
tolerant applications.

In the proposal from Kim et al. [12], the algorithm classifies WiFi traffic into
real-time and non-real-time. In this context, real-time traffic includes voice and video call
transmissions, while non-real-time includes peer-to-peer and video streaming transmis-
sions. The algorithm extracts traffic characteristics from each transmitting node using
Wireshark - an open-source packet analyzer - then computes the statistical features based
on frame size and interarrival time. Furthermore, the algorithm computes the channel
busy-period, and the WiFi access point sends a control message to non-real-time nodes to
back off the transmission. Hence, the algorithm grants ZigBee nodes with the appropriate
airtime to transmit physiological information.

Sodhro et al. [16, 57] investigate methods to provide QoS for medical applications.
In Sodhro et al. [16], the authors propose a window-based rate control algorithm for
medical video. Specifically, this work analyses the scenario of a surgery video transmission
over a bG network. Additionally, the authors considered an edge computing framework
to optimize communication. In such an analysis, the authors investigated the network
metrics such as standard deviation, peak to mean, delay, and jitter balanced with client
buffering size and window size to optimize the QoS.

In Sodhro et al. [16], the authors explore the concepts for mobile edge computing
in Matlab. The testing considers a pre-recorded medical video with 8 seconds duration
encoded with MPEG-4. In this experiment, the authors examine a single-hop network.
Based on the results, this analysis concludes that delay and jitter increase with the increase
of the client buffer. However, peak-to-mean and standard deviation decrease, pointing
out to a smooth transmission of the medical video. The authors propose an algorithm
performing better than the baseline algorithm tested with 600 frames for window size or
20-sec playback delay.

Afterward, Sodhro et al. [57] proposes an Adaptive Quality of Service Compu-
tational Algorithm (AQCA) that relies on monitoring performance indicators, combined
with QoS adaptation in the physical, MAC, and network layers. The authors motivate
the discussion in terms of the patient’s perceived quality of experience. In this sense,
this work considers emergency conditions and regular patient monitoring requiring differ-
ent bandwidth for data transmission. Hence, the authors correlate the QoS metric, i.e.,
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transmission power, duty cycle, and route selection, with the Quality of Experience (QoE)
perceived by end-users concerning ECG processing.

Al-Turjman et al. [8] survey the IToMT solutions and propose a generic framework
based on a three-tier approach: (i) data acquisition, (i) communication gateway, and (7ii)
cloud server. In this survey, the authors classify the IoMT applications in body-centric
and object-centric, for both indoor and outdoor usage case. Body-centric application
refers to scenarios where sensors directly connected to the human body collect physio-
logical information - wearable devices. The complementary, object-centric application
enhances the IoMT user experience without any direct connection with the human body
but providing solutions such as mobile Intensive Care Unit (ICU).

In the context of Al-Turjman et al. [8] analysis, the data acquisition includes
aspects of sensing devices, signal pre-processing, and Analog/Digital conversion. Follow-
ing, the authors define the IoMT gateway as both physical devices or software-defined
solutions to interconnect the data acquisition tier with the cloud server. In this sense, the
gateway provides data normalization, data pre-processing, and network connectivity. The
cloud server executes most of the data mining tasks [8]. Investigating the published arti-
cles, Al-Turjman et al. enumerate the main challenges in the IoMT applications, named,
the increasing healthcare costs with the introduction of new technologies, the signal ac-
quisition quality to avoid any misguiding information, the data security and individual’s
privacy, the device’s safety to minimize the risk of accident, energy consumption, and
device’s comfortable usage. These challenges lead to several opportunities for exploring
in future works. We highlight the opportunities in the area of machine learning for a
decision support system and the employed communication technology.

Table 4 summarizes some related works in the literature. Based on the analysis
of the state-of-the-art, the present works investigated QoS in the context of [oMT, Low
Power Wide Area Network (LPWAN), and WiFi networks. However, these works they
handle the transmission of only one physiological stream. To the best of our knowledge,
our study is the first to evaluate a machine learning staging to classify multiple vital signs
data streams and apply the classification information to prioritize the transmission across
the network.

3.3 Chapter Conclusion

The application of ML algorithms for clinical diagnostic gain momentum with
the introduction of new technologies. Nevertheless, the analysis of physiological data
such as EEG, ECG, and PPG for epileptic seizure detection is not recent. As noted in
related works, most proposals achieved high accuracy with low false alarm rates. How-
ever, the implementation strategies do not privilege the application scenario with scarce
computational resources.

In the context of [oMT network, it is essential to investigate the computational
complexity of the implemented proposal. The ML algorithms for classification required
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Table 4: The summary of data traffic classification to network access priority for Health-
Care applications

Work Network Architecture Metric Description
Hassan et al. [23] WiFi + LPWAN Packet Loss Adaptive streaming based
on the number of devices
Patel and Choudhary [56] Congested 802.11n Delay Cross-layer mapping to provide
QoS for video streams
Kim et al. [12] WiFi + LPWAN Delay Delay background network traffic
to provide QoS for medical data streams
Vergutz et al. [17] WiFi + LPWAN Delay Send alerting beacons using EDCA in WiFi
Sodhro et al. [16] 5G i:};ﬁ Window-based rate control algorithm
Bit Error Rate
Sodhro ef al. [57] WiFi + LPWAN Jitter Adaptive QoS computation algorithm
Throughput
Delay

that new data exhibit lies within the same range of training data. Any other situation
will lead to unpredictable results. Hence, the new exhibit may cause algorithms to lose
generalization capability. Thus, the algorithm requires periodic training and updates to
keep the analytical capacity. In this sense, the combination of high accuracy algorithms
with low computational complexity solutions demands more investigation in the IoMT
context.

The related works reviewed in this research analyses aspects involving an IoMT
network. The typical architecture involves the body sensors, the communication gateway,
and the cloud servers. In this scenario, ML algorithms have the potential applicability in
the communication gateway or the cloud servers. The application scenario includes clinical
diagnostic or communication optimization to provide medical devices with a better QoS.
However, little research works investigate the ML applied with multiple physiological
streams and transmission prioritization based on the relevance of the vital sign to the
clinical diagnostic.

As discussed in the related works, the medical application has strict QoS require-
ments. The analyzed works propose solutions to reduce packet delay, packet loss, bit error
rate, throughput, and jitter. Additionally, the researches investigate the issues involving
available technologies such as LPWAN, WiFi, BLE, NFC, and others. However, the an-
alyzed works mostly considered the transferring of a single physiological stream, which
diverts from a practical application. Patients in chronic conditions monitored outside
hospital premises likely require the transmission of more than one physiological stream.
Hence, the investigation to provide QoS for IoMT applications must evolve to scenarios
of multiple physiological streams competing for the wireless medium access.



39

CHAPTER 4

Performance of Machine Learning Algorithms
for Epileptic Seizure Detection

This Chapter introduces a proposal to answer the first and second research ques-
tions. Specifically, we investigate the ML algorithm’s applicability to detect epileptic
seizures. Additionally, we evaluate the algorithm’s computational complexity and preci-
sion in fulfilling the research objective in a IoMT context. Moreover, we investigate the
application of an ensemble to combine the results of stand-alone classifiers. Section 4.1
describes the application scenario and the main building blocks of our proposal. Section
4.2 introduces the dataset considered in our analysis. Section 4.3 discusses the character-
istics of six of the most common machine learning algorithms for classification. Following,
Section 4.4 discusses the accepted metrics to evaluate the machine learning algorithms
applied for classification. Finally, we present and discuss our results in Section 4.5, and
point for future research directions in Section 4.6.

4.1 Overview

People with epilepsy require frequent monitoring and ambulatory EEG constitute
a practical clinical test to detect seizures [26]. However, it is unfeasible to use ambulatory
EEG equipment outside the hospital premises. In this context, we consider the possible
use of wearable devices to collect the patient’s vital signs outside the hospital premises.
Hence, the brain activity is the principal physiological information for epileptic seizure
detection. Moreover, the wearable device and a body gateway or smartphone to coordinate
transmission and process data constitutes the [oMT systems’ backbone. In this sense, data
processing includes signal normalization, feature selection, and seizure detection. Hence,
the monitoring system may transmit only the seizure detection information instead of the
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complete EEG signal.

There are already some wearable options in commercial use capable of collecting
EEG signals. Bioserenity is the startup company behind the NEURONAUTE project
L. The project develops a textile to collect EEG information, implementing the 10-20
electrodes placement, and connecting to a mobile application to provide 24-hour monitor-
ing. Behind-the-ear electrodes constitute an alternative to collect EEG data for patients
suffering from focal epilepsy [58]. Gu et al. [58] demonstrates that SVM combining EEG
features obtained with behind-the-ear electrodes achieve lower accuracy than scalp EEG
systems; however, the solution delivers a lower false alarm rate. Another potential option

to collect EEG data is the e-tattoo patented by Motorola [4].

In Chapter 3, we discuss the use of ML to analyse vital signs and detect epileptic
seizures. For the scenario of [oMT applicability, we analyze the performance of six machine
learning algorithms following the workflow outlined in Figure 6. To simulate the sensor
data collection, we read the EEG data from a CSV file. After reading the information and
storing it in a data frame, we normalize the dataset using the minimum and maximum
values. Specifically, we scale the values according to the observed minimum and maximum
values in the dataset, calculating the new value according to Eq. 4.1. Following, we split
the dataset into three equally-sized subsets for training, testing, and validation. We
apply the training and testing subsets to configure individual ML models and reserve the
validation subset to validate an ensemble model. Furthermore, the ML model requires a
characteristic (i.e., feature) to express mathematically. For this analysis, we select the
amplitude of the waveform in the time domain as characteristic for modeling. After data
preparation, we trained six machine learning models, namely, DT, RF, KNN, NB, ANN,
and SVM using cross-validation 20-fold with the corresponding training set. Afterward, we
tested the model’s accuracy submitting the testing subset to the trained model. Finally,
we apply the predictions in the testing set and use it to train an ensemble model. We
validate the ensemble model using the validation set.

r — min(x)

normalize(x) = (4.1)

max(z) — min(x)

4.2 EEG Dataset

For the sequence of this analysis, we consider the EEG dataset available at the
University of California at Irvine (UCI) ML repository [59], derived from Andrzejak et al.
[37]. This dataset is composed of five classes denoted from 1 to 5, as shown in Table 5. The
EEG signal collection considered both epileptic patients and healthy individuals. Epileptic
patients were in presurgical evaluation. In this condition, patients received intracranial
electrodes placed in both the epileptic zone and in the opposite brain hemispheres. For
healthy individuals, the EEG acquisition adopted the international 10-20 system to place

Thttps://www.bioserenity.com/en/
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Figure 6: Diagram for the proposed modeling

the electrodes on the scalp. That work reports that individuals were awake and relaxed
during recording. In this context, classes 1 and 2 refer to epileptic patients recorded
during a seizure and seizure-free period. Class 3 relates to epileptic patients recorded
with the intracranial electrode placed in an epileptic-free zone. Classes 4 and 5 refer to
healthy patients registered with their eyes closed and eyes open, respectively. Concluding
the analysis, only class 1 contains the seizure activity.

Initially, a total of 500 individuals took part in the data collection, having their
respective EEG time series saved in 5 different folders with 100 files each. Thus, each
set composing a class contains 100 single-channel of EEG segments with a duration of
23.6 seconds sampled in 4097 data points. The EEG segments constitute samples from a
continuous multi-channel EEG recording, from healthy volunteers and epileptic patients,
selected by a specialist after visual inspection. The UCI ML repository reorganized the
dataset in a single comma-separated values (CSV) file to simplify the access. The instances
in the simplified dataset count for 1-second of EEG sampled in 178 points, with each point
representing the signal’s amplitude value at that moment in time. In this reorganization,
the UCI ML repository provided a file with 11500 examples of EEG data, each pattern
with 178 data points representing the amplitude value. Additionally, the UCI ML included
the corresponding class (1, 2, 3, 4 or 5) in column 179 [59].

The EEG registers a distinctive discharge during epileptic seizures. The spike-
and-wave pattern in the waveform generalizes most of the epileptic syndromes [26]. In
this context, a peak lasting from 20 msec to 70 msec or a sharp wave between 70 msec
and 200 msec has strong characteristics during EEG visual inspection. This characteristic
is remarkable when comparing the waveforms from seizure and seizure-free EEG signals,
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Table 5: Classes on EEG dataset

Class Description

Recording of EEG data during seizure activity

Recording of EEG data from tumor area

Recording of EEG data from healthy brain area

Recording of EEG data while patients had their eyes closed
Recording of EEG data while patients had their eyes open

U W N =

as seen in Figure 7 exemplifying the classes 1 and 5 from Table 5. Using a ML approach
enhances physical survey capabilities. In this sense, the ML model seeks to map the
features that identify the seizures. The right combination of features and algorithms
improves the model’s accuracy. However, noise, motion artifacts, and sensor calibration
data cause interference in the collected signal, distort the characteristics, and inaccurate
the model.

Healthy EEG signal vs Epileptic Seizure EEG

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170
time(msec)

Epileptic Seizure EEG Healthy EEG

Figure 7: Comparison of Healthy EEG signal with Epileptic EEG signal during seizure

To filter the imperfections that noise causes in the EEG signal, some research
authors choose to decompose the time series in its spectral frequency components. In
this context, power spectral density, the frequency with maximum and minimum ampli-
tude, spectral entropy, band energy, and discrete wavelet transform coefficients constitute
feature options in the frequency domain [60]. However, transforming from time to the
frequency domain requires additional computational effort. In the context of IoMT, any
transformation inserts computation that drains energy from the devices. Using time-
domain features is more straightforward. In this sense, minimum and maximum value,
mean, variance, standard deviation, percentiles, and the number of positive and negative
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peaks constitute potential feature options.

In our research, we evaluated a set of ML algorithms in the time domain, using
the amplitude of the waveform as the classification feature. We proposed the evaluation
in the time domain to avoid additional processing effort to obtain features in frequency or
time-frequency domains. In our favor, we acknowledge that Andrzejak et al. [37] removed
the discontinuities from the original EEG time series. Thus, the authors eliminated the
inaccuracies caused by noise and motion artifacts. Additionally, the UCI ML repository
provided a cleaner dataset by reducing the instance size from 23.6 sec to 1 sec [59].

As discussed in related works, epilepsy syndrome affects from 0.4% to 1% of
the world population [24]. The authors using the dataset from Andrzejak et al. [37]
propose solutions using balanced data, e.g., combining two, three, or the five classes with
equilibrium in the number of instances in each class. Considering we have more healthy
individuals than people with epilepsy, it is more realistic to train the ML model to identify
epileptic seizures under an imbalanced dataset. In this context, our proposal investigates
the solution under an imbalanced dataset proceeding with a binary classification using
the categorical class as follow:

e Seizure: Refers to EEG waveforms identified by an expert as exhibiting an epileptic
seizure (Class 1 from UCI dataset [59]).

e Non-Seizure: According to the expert evaluation, it relates to the EEG waveforms
from healthy individuals or epileptic patients during seizure-free intervals (Classes
2 to 5 from UCI dataset [59])

4.3 Machine Learning Algorithms

ML algorithms constitute a proven methodology for pattern recognition. Hence,
ML can be an efficient procedure for the clinical evaluation of patients with epilepsy. ML
provides accurate diagnostic given the right features and input pattern. In this context,
EEG provides the input pattern for analysis, and the spike-and-wave characteristic in the
waveform gives the feature for epileptic seizure detection. In our modeling, we trained
individually six ML algorithms, namely, DT, RF, KNN, NB, ANN, and SVM. After, we
tested and identified the seizures on new data. Following, we use the outputs from the
six ML to train an ensemble model. Finally, we validated the ensemble model.

4.3.1 Decision Tree

DT became a popular machine learning classification method due to its versa-
tility and applicability to many problems, ranging from object identification to medical
diagnostics. The concept is to use the tree structure to split features into different classes
based on probabilistic criteria and numeric threshold. Features or attributes define the
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class, e.g., formats and sizes of objects, or medical symptoms like pain and fever. There
are many algorithms to grow a DT, such as Iterative Dichotomiser 3 (ID3), Classification
and Regression Tree (CART), Chi-squared Automatic Interaction Detector (CHAID), and
C5.0 - an alternative to ID3.

DT has the advantage of being easier to interpret compared to other classification
methods, such as ANN and SVM. However, the model may lose generalization capacity
due to overfitting. Specifically, the algorithm will stop only when all data are classified,
and depending on the features, this whole process can cause overfitting. There are two
common ways to deal with the overfitting effect: limit the number of branches or allow a
new ramification only with a minimum number of data points to fill in the new division.

An essential aspect of the DT configuration is how to define the importance of
each feature to maximize the classification results. The algorithm takes the character-
istic that better represent the class and position it in the root. The literature proposes
some indexes to identify the most relevant features: the Gini Index, Entropy Index, and
Information Gain are indexes examples. Gini index expressed in Eq. 4.2 is a measure
of the variable’s importance for the dataset. The Entropy Index showed in Eq. 4.3 is
a measure of uncertainty associated with the variable. The information gain measures
the information obtained by observing one random variable based on the observation of
another random variable. Specifically, the information gain from a variable A expresses
the reduction of entropy of that variable based on the learning of a variable B state (Eq.

4.4).

Gini(S) =1 — ij? (4.2)

Where S is the dataset and p; is the relative frequency of class j in S.

N
H=-3 PlopP, (4.3)
=1

With P; the probability of the value ¢ to occur and N is the number of possible
values.

Gain(A) = H(B) — Ha(B) (4.4)

We follow the implementation of the C5.0 algorithm available in the caret package
in the R language. This algorithm requires a categorical class to classify the data correctly.
The C5.0 model selects the feature with higher information gain to place the sample in
the tree root. After finishing splitting data in the tree, the algorithm reevaluates the lower
leaves and removes those with less critical information.
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4.3.2 Random Forest

RF is a collection of DT trained with randomly selected data. Hence, the algo-
rithm guarantees that each tree is slightly different from each other. Thus, each tree may
return a distinct result for a given dataset. The RF algorithm classifies the data based on
a voting system involving the results from the individual trees. Specifically, direct voting
count how many trees classified a given feature under a particular class. Additionally,
weighted voting returns the ratio of elements belonging to a given group.

RF performs better than DT in two aspects, namely, overfitting and anomaly
detection. During the RF training process, the outliers will be present in some of the
trees but not in all of them, and thus the voting system guarantees the anomalies will
be isolated. The voting system also minimizes the effect of overfitting concerning the
individual decision tree. However, RF has problems to extrapolate data. Specifically,
attribute values in the validation set must be within the value limits of the training set.
Not trained or out-of-limit attributes may lead to unpredictable results when included in
the validation set.

The RF algorithm accepts the number of trees to grow as a configurable param-
eter. There is no best value, and the limit should be the storage capacity to save the DT.
However, the higher number of DT does not necessarily pay off in the classification results.
The right approach is to start with a few trees and gradually increase their number until
the benefit does not worth the resources.

4.3.3 K-Nearest Neighbor

KNN classifies data based on the distance, usually Euclidean distance, between
a particular data point and its k& neighbors. The KNN algorithm has a great heritage
of possible applications, such as meteorological prediction [61], elderly fall detection [18],
crime detection [62], epilepsy seizures detection [63], and many others. KNN has the
advantage of making no initial assumption about the data set because it merely groups
the data points based on similarity with historical data. Differently from the other models
discussed in this work, KNN does not require training. However, the algorithm stores all
instances in the dataset and only stops after grouping all data. Usually, but not always,
it achieves better accuracy with higher £ values.

4.3.4 Naive Bayes

The NB algorithm derives from the conditional probability theory [64], where NB
associates the probability of an event B to occur based on previous knowledge of an event
A, as shown in Eq. 4.5.

pB) =~ (A); (];()B [4) (4.5)
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In the BAYES theorem, P(A) is the Priori probability known to be true. P(B|A)
is the Likelihood, the conditional probability given that new data is known to be true.
P(B) is a Normalizing Constant, to guarantee that probabilities will sum 1. P(A|B)
is the Posteriori probability, obtained after incorporating new data to the calculations
and after normalization. The NB algorithm maximizes the Posteriori probability. The
algorithm initializes the probabilities for the outcome variables and adjusts it in each
interaction based on what happened with the other variables in the dataset.

4.3.5 Artificial Neural Networks

ANN are machine learning algorithms capable of classifying linear and non-linear
data. The typical ANN architecture presents a given number of connected neurons ar-
ranged in layers. The data structure represents an artificial neuron, usually configured
with pointers connecting to other neurons and a weight value (real number) to ponder
each connection.

Multi Layer Perceptron (MLP) refers to an ANN configured with a variable num-
ber of neurons arranged in one input layer, one or more hidden layers, and one output
layer. Specifically, MLP propagates a stimulus injected into the neurons on the input
layer, through the connected neurons in the hidden layers, and reflects in the output
layer. Back Propagation is a common training algorithm for MLP that executes in two
phases:

e Forward phase: initially, each neuron receives a fixed weight value. The algorithm
transfers the injected signal from the input layer to the output layer using the weights
to ponder the result.

e Backward phase: the algorithm calculates the error between the obtained and
desired outputs and back-propagates the error in the network, adjusting the neurons’
weights in the way back.

The training process repeats the forward and backward phases for a certain num-
ber of interactions. In each interaction, the algorithm focus on minimizing the error
between the actual and the desired output. The training process stops when the error
falls below a threshold, or the algorithm reaches the maximum number of interactions.

4.3.6 Support Vector Machine

SVM is a ML algorithm based on the concept of kernel. Haykin [65] defines the
kernel k£ of a input vector z, denoted as k(z), as the function with similar properties of a
probability density function, such as described below:

e property 1: the kernel k(z) is a real function of z, starting in its maximum value,
symmetric, continuous, and bounded.
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e property 2: The total volume under the surface of the kernel k(z) is unity.

The concept behind SVM is to construct a hyperplane to work as a decision
surface to separate patterns. The SVM algorithm extracts a small set from training data
to work as a support vector and compute the inner-product kernel between the support
vector and the input data set vector.

4.3.7 Ensemble Classifier

In practical life, there are several circumstances where experts diverge in their
opinion about a subject. Differences in skill levels and experience, among other reasons,
lead to such disagreement. For mission-critical decision making, it is reasonable to use
established criteria to reach a consensus, e.g., a voting system. The classification com-
mittee also referred to as ensemble classifier, is the ML implementation of this concept

20, 66).

When training stand-alone models, every single one might perform better for a
specific set of features or adapt better for the problem in focus. The ensemble classifier
composes a broader resolution combining the solution from stand-alone ML models. This
implementation potentially enhances system performance since the final solution combines
the majority prediction from individual results. Bagging, boosting, and stacking are the
most adopted strategies to implement the ensemble model [67]

The Bagging and Boosting strategies combine the results using a voting system.
These two strategies converge using stand-alone models of the same type. However, they
diverge in the voting system. On the one hand, bagging uses simple voting considering
the same weight to every prediction. On the other hand, the boosting strategy biases the
voting system giving more weight to models with higher accuracy. The training set for
the ensemble model using bagging or boosting derives from the training set used for the
stand-alone models. The algorithm selects some, but not all, instances from the training
set through a random procedure. Thus, the derived training set counts for duplicated and
omitted examples when compared with the original dataset.

The Stacking strategy applies to stand-alone models of different type, e.g., com-
bining tree, probabilistic, and kernel solutions. To implement this strategy, we start
defining the stand-alone models individually. Following, we enrich the dataset with the
predictions of these stand-alone models to create a new dataset. Finally, we apply the
new enriched dataset to train the ensemble classifier. This strategy brings more benefits
when the stand-alone models are not correlated. Considering the stand-alone models do
the inferences, makes sense that the ensemble model applies a simple algorithm like linear
or tree model to combine the results.
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4.4 Evaluation Metrics

A paramount aspect of any ML model is its performance according to different
indicators. In other words, is measuring how good the model is in achieving its objec-
tive comparing with the chance. For classification, the metrics derived from the results
presented in a confusion matrix as an exhibit in Table 6. A confusion matrix crosses the
predicted with observed values, considering the model’s performance in classifying unseen
data [68]. The confusion matrix tabulates the predicted results against the observations.
Specifically, True Positive (fp) stands for correctly accepted instances, False Positive (fp)
relates with incorrectly accepted instances, True Negative (in) refers to correctly rejected
instances, and False Negative (fn) computes the incorrectly rejected instances. Based on
the confusion matrix, we derive Key Performance Indicators (KPI) for the model, such as
Precision-Recall, Accuracy, Sensitivity, Specificity, and Kappa.

Table 6: Confusion Matrix

A B
A | true positive (tp) false negative (fn)
B | false positive (fp) true negative (in)

’ OBSERVED

PREDICTED

Precision considers the number of attributes correctly classified to a given class
compared to the number of characteristics correctly and incorrectly classified to that class,
which is computed based on Eq. 4.6. Precision measures the classifier’s correctness and
the relevance of positive classifications. Higher precision means a higher number of true
positives and a lower number of false positives.

ip
tp+ fp

Precision = (4.6)

The recall complements the understanding from precision. Recall expresses the
fraction of relevant instances retrieved by the model as an exhibit in Eq. 4.7. Specifically,
recall is the ratio of correctly predicted positive to the total number of expected positive
observations.

ip
tp+1in

Recall = (4.7)

Accuracy has a slightly distinct understanding of precision. Accuracy is the
relation between the correct classified instances (positive and negative) of the problem
over the total number of instances. Thus, accuracy includes the true negative value to
the equation of precision and calculate not only the true positive. Hence, the accuracy
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expands the calculation of precision, as expressed in Eq. 4.8.

tp+in
tp+ fp+tn+ fn

Accuracy = (4.8)

Sensitivity and specificity complement the understanding of accuracy and preci-
sion. The sensitivity is the true positive rate and relates the accurate positive predictions
with positive observations, computed based on Eq. 4.9. Sensitivity quantifies how good
the model is in avoiding false negatives. The specificity does the same for the false pos-
itives. Specificity means the rate between accurate negative predictions and negative
observations, as shown in Eq. 4.10. It refers to how good a model can be in minimizing
false alarms.

. tp
Sensitivity = 4.9
Y tp+ fn (4.9)

tn
Speci ficity = 4.10
pecificity = - e (4.10)

Additionally, the Kappa normalizes the Accuracy results with a chance. In this
sense, Kappa compares the observed accuracy with the expected accuracy if the classifi-
cation results occurred by chance, as expressed in Eq. 4.11. Note that Kappa will always
return a value between 0 and 1.

ObservedAccuracy — Expected Accuracy

Kappa = (4.11)

1 — ExpectedAccuracy

4.5 Results and Discussion

The body sensors, the communication gateway, and the central server constitute
the main building blocks in the IoMT architecture [10]. The body sensors collect the
physiological data but have a low computational capacity to perform complex tasks. The
communication gateway intermediates the body sensors connections and manages the
traffic to reach the central server. Finally, the central server with higher computational
capacity process most of the analysis to support the medical crew.

To embed an ML technique in an IoMT architecture requires both model’s ac-
curacy to execute its purpose and capacity to minimize the false alarms (false negatives
and false positives). In this context, a single ML metric is not suitable to fulfill this anal-
ysis. Hence, the discussed ML metrics for classification complement each other. Thus, we
initially analyze the results based on Accuracy and Kappa, according to Figures 8 and 9,
respectively.

Examining the accuracy outcome in Figure 8, we observe that results are statis-
tically equivalent. First of all, we apply the same dataset for all investigated algorithms.
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Following, we consider the significance test between each pair of models to compare the
results. In this context, we verify that the resulting variance between models spans zero,
i.e., it is not statistically relevant. For instance, the results for SVM and RF models
vary 1.44E-05 when calculating the significance test, which is near-zero variance. Besides,
we consider the confidence level of 95% for all models. The confidence level expresses
the trust that reproducing the experiment with different data exhibits achieves the same
result. Notably, the SVM and RF models achieve the highest accuracy for the EEG
dataset. On the one hand, the SVM with radial kernel reaches 97.26% accuracy. On the
other hand, RF achieves 97.08% for the same dataset.

Training the SVM is kernel-dependent. In the worst-case scenario, Abdiansah et
al. [51] demonstrates that SVM has O(n?) complexity with LibSVM implementation for
both training and prediction. Therefore, the cubic computational complexity becomes
challenging in an [oMT architecture. The RF model performs well for small datasets,
but implementation complexity increases in scenarios with high data volumes. Hence,
Choromanska and Langford [47] propose an algorithm to train and retrieve information
from the trees with O(log n) complexity. Thus, to grow a forest turns the computational
complexity to O(n log n). For both SVM and RF computational complexities, n represents
the dataset dimension.

The DT model achieved an accuracy of 96.66%, with 95% of confidence level.
As discussed before, Choromanska and Langford [47] propose an algorithm with O(log
n). However, the DT algorithm is less performing concerning outliers in the dataset
compared to RF. Alternatively, the NB model reaches 95.98% of accuracy. This result
is 1.10% below the accuracy result achieved by RF. Nevertheless, the NB model has the
advantage of being simple to train and recover. Ahmadi and Bouallegue [69] establish that
the NB computational complexity is equivalent to O(mn), with m equals to the number
of features and n equals to the number of instances. Thus, the computational complexity
for NB bounces between linear to quadratic, depending on the problem dimension.

The ANN model achieves an accuracy of 93.53% when trained with backpropa-
gation with a single hidden layer. Backpropagation is a popular ANN training algorithm,
but backpropagation may converge to a local minimum, and thus the result may not reach
the optimum value. Therefore, the ANN requires frequent training revision to enhance
generalization capability when it starts lacking accuracy. Bilski et al. [41] explains that
training a neural network with an optimized algorithm such as Levenberg-Marquardt is
equivalent to O(n?) using parallel processing. However, the prediction using an ANN
requires just a multiply operation, which is straightforward to fulfill. In this context,
the computational complexity to train the ANN is time-consuming from the application
perspective, but the ANN method has advantages during prediction.

Comparatively, the KNN algorithm groups the nearest neighbors to the k initial
centroids using a distance metric, e.g., euclidian distance. Calculating the arithmetic
distance between the new data sample and the centroids is a linear operation. However,
the algorithm is space-consuming since it tries to accommodate all dataset instances in
the model up to the limit of the system’s physical memory [70]. In a IoMT context, it
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only applies to scenarios of small datasets or in systems with large storage capacity.

Figure 8 presents the algorithms with statistically similar outcomes. However, we
are dealing with an unbalanced dataset, with seizure class being 20% of all instances in the
dataset and non-seizure the additional 80%. In such circumstances, the accuracy alone
misleads the model interpretation because the imbalanced dataset might bias the result.
In this scenario, the Kappa normalizes the accuracy results and improve its understanding.

100
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Figure 8: Accuracy for different ML algorithms in classifying epileptic seizures from EEG
data.

The kappa results receive different interpretations depending on the analyst. The
values presented in Table 7 for the strength of the kappa statistic are an arbitration
accepted in the literature [71]. From the outcome of our experiments in Figure 9, five
out of six classifiers presented results above 0.80, which is almost perfect. Additionally,
SVM and RF outperformed DT, NB, and ANN with Kappa above 0.90. The KNN model
resulted in Kappa between moderated and substantial, with a value of 0.6082. Thus, all
investigated algorithms but KNN presented reliable and consistent results.

Table 7: Agreement measure for categorical data.

Kappa Statistic | Strength of Agreement
<0.00 Poor

0.00 - 0.20 Slight

0.21 - 0.40 Fair

0.41 - 0.60 Moderate

0.61 - 0.80 Substantial

0.81 - 1.00 Almost Perfect

Reciprocally, sensitivity provides the algorithm’s capacity to avoid false nega-
tives. In this indicator, the KNN model achieved the best result as an exhibit in Figure
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Figure 9: Kappa for different ML algorithms in classifying epileptic seizures from EEG
data.

10. However, this is a direct effect of the binary classification on imbalanced data. The
specificity results presented in Figure 11 confirms this analysis. The KNN model per-
formed worse in isolating the false positives compared to the other five algorithms. The
SVM and RF presented lower sensitivity; however, they exhibited higher specificity than
the five tested ML alternatives. The Specificity results reinforce that SVM and RF have
a high capacity to minimize false alarms. Putting the results together, i.e., Accuracy,
Kappa, and Specificity, in Table 8, we conclude that SVM and RF still present the best
results compared with DT, NB, ANN, and KNN.

In an IoMT architecture, wearable devices provide physiological sensing. For
clinical diagnostic, the IoMT devices can perform in-device or fog processing using ML
algorithms. Thus, IoMT application for epileptic seizure detection requires availability,
reliability, low latency, and fast response times. This scenario expects an algorithm with
high Accuracy, Kappa, and Specificity combined with low computational complexity.
As discussed in Chapter 3, many research works investigate epileptic seizure detection
based on EEG analysis. On average, the surveyed articles achieve 94.31% of accuracy.
Therefore, we define 94% as the baseline for the accuracy of any ML model applied for
epileptic seizure detection. Concerning computational complexity, an algorithm executing
in constant time, i.e., O(1), delivers the best solution [72]. Algorithms with O(log n) and
O(n) complexity, with n equals to the dimensional of the dataset, performs worse than
O(1) but still are good solutions. However, algorithms with computational complexity
higher than O(n log n) are considered computationally expensive solutions. Thus, we
assumed that an ML algorithm with complexity equal or better than o(n log n) potentially
fits in an IoMT architecture to execute in-device or fog.

Table 8 summarizes the results achieved in this work. We present the Accu-
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Table 8: Performance results and complexity for the tested models

Algorithm | Accuracy (%) | Kappa | Specificity (%) | Computational Complexity | Applicability in Wearable
SVM 97.26 0.9154 08.74 O(?) N/A
RF 97.08 0.9082 98.13 O(n log n) A
DT 96.66 0.8954 97.88 O(log n) NA
NB 96.00 0.8754 97.62 O(m n) N/A
ANN 95.85 0.8628 95.89 O(n?) N/A
KNN 89.93 0.6082 88.89 space O(n) N/A

4.5.1 The Ensemble Classifier Results

In this research, we analyze the stand-alone classifiers of different types. Ac-
cording to Witten and Frank [67], combining the individual’s algorithms in an ensemble
model likely enhances the overall system performance. Each stand-alone algorithm might
perform better for specific features, and the ensemble capture whats is best from each of
them. However, the ensemble model has two constraints: (i) the ML models originating
it can not be strongly correlated, and (7i) the ML models can not perform poorly. If so,
the stand-alone models will not carry too much information for the ensemble.

In Subsection 4.3.7 we explain three adopted strategies to combine the stand-alone
models into on ensemble classifiers. Given that we analyze classifiers with heterogeneous
concepts, the Stacking strategy is the right choice to combine our stand-alone results. Our
implementation follows the strategy explained in Witten and Frank [73]. In this sense, the
input for the ensemble model is the predictions of the stand-alone models. Moreover, the
ensemble can be simplified using a tree or linear model, since the stand-alone models did
all the heuristics [67]. Furthermore, in previous analysis we conclude that RF constitutes
a good approach for application in the [oMT context. Hence, we implement the ensemble
classifier using RF to combine the stand-alone models in pairs and triples.

The results in Table 9 presents the Accuracy and Kappa for the Ensemble model
from the highest to the lowest accuracy. To obtain these results, we initially enrich
the testing dataset with the predictions from the stand-alone models. Then, we train
the Ensemble model using the RF algorithm against the enriched dataset. Finally, we
validate the Ensemble model using the validation set. As illustrated in Table 9, combining
SVM and ANN achieve 97.76%, roughly 0.5% better than SVM and 1.9% better than ANN
stand-alone. Additionally, we verify an improvement in Kappa results due to the ensemble
model.

Table 9: Accuracy and Kappa for Ensembled Models

Ensemble Model | Accuracy (%) | Kappa

SVM and ANN 97.76 0.9315
SVM and NB 97.70 0.9301
SVM and RF 97.63 0.9277
SVM, NB and KNN 97.07 0.9080
NB, KNN and ANN 96.97 0.9047
SVM, NB and ANN 96.92 0.9029
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4.6 Final Remarks

The IoMT architecture composed of body sensors, communication gateway, and
the central server is subject to several inaccuracy sources. According to Gravina et al. [74],
motion artifacts, sensor’s precision, sensor’s calibration, and the limited sensor contact
with body parts causes measurements to fail. In practical applications, an alternative
to minimize the sensor’s inaccuracy is to combine the information from different sensors.
Thus, some authors dedicate their investigation to multi-sensor strategies and sensor
fusion proposals [74, 60, 27].

In this research work, we analyze the ML algorithm in a stand-alone mode and
configuring an ensemble. The aforementioned imprecision may decrease the ML accuracy
and increase the false alarms. Thus, ML algorithms might perform worse in practical ap-
plications when compared with theoretical models. Hence, the application of an ensemble
classifier enhanced the system performance in both accuracy and kappa Key Performance
Indicators (KPI). Table 10 shows that our model presents promising results. The RF
implementing the ensemble model has O(n lg n) complexity for training and retrieving
data in the trees. Our model performs above average when compared with other related
works and is better than models using ECG.

The application of an ensemble model opens the possibility for fusing different
physiological information with one sole diagnostic purpose. Following the work from
Mporas et al. [60] and Qaraqe et al. [27] on sensor fusion, RF could combine the different
physiological information to detect epileptic seizures. Based on this lead, future research
direction points for the combination of EEG and ECG. The EEG signal offers better
features for epileptic seizure detection [26]. The ECG signal can provide both epileptic
seizure detection [52, 53] and proof of life (user’s authentication) [75, 76]. Thus, our
proposal can evolve to a decision-making procedure considering two physiological data for
seizure detection and one physiological information for identifying people with epilepsy.
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Table 10: Our results compared with other authors
Author Dataset Algorithms Complexity — Accuracy (%)  AuC
Welch FFT O(n log n) -
Polat and Giines [48] EEG [37] PCA O(min/p3,n?)) 100.00
AIRS with Fuzzy 02")
. FFT O(n lg n) -
Polat and Giines [45] EEG [37] DT O(ig k) 98.72
.. - . WT O(n) _
Giiler and Ubeyli [42] EEG [37] ANFIS 0(2") 98.68
THIS WORK EEG [37] Ensemble Model (using RF) O(n lgn) 97.76
Giiler et al. [38] EEG [37] RNN with LE om3) 96.79 -
WT O(n) -
Hosseini et al. [50] EEG [50] I-ICA O(kn) 96.00
SVM O(n?)
HRI Extract O(n) -
De Cooman et al. [52] ECG [52] VM Ofn’) 81.89
HRI Extract O(n) -
Vandercasteele et al. [53] ECG [53] VM Ofn’) 70.00
Neto et al. [20] EEG Classification Committee - - 0.7486
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CHAPTER 5

Data Traffic Classification to Priority Access
for Wireless Healthcare Application

In the third research question, we seek to answer how to provide better QoS to
transmit the diagnostic information to the hospital server in an loMT application scenario.
In the best-case situation, the IoMT application expects a dedicated high-speed channel.
However, the sensing devices typically connect to a gateway using a short-range and low-
speed wireless technology [4, 10]. Once in the gateway, the IoMT application will compete
for medium access in the network system to transmit the information to a central server.

In this Chapter, we present MAESTRO - a device management system to co-
ordinate IoMT device transmission to the application server. The system architecture
consists of two modules. In the first module, the Classifier identifies the physiological
stream and assigns a required transmission priority according to a pre-defined QoS. In
the second module, the Prioritization allocates the physiological flow to an appropriate
network access category in the WiFi MAC layer according to the assigned priority. Our
strategy has the advantage of enhancing transmission QoS for IoMT devices, depending
on the therapy’s medical requirements.

The remaining of this Chapter discusses the application scenario in Section 5.1.
Section 5.2 explores the classification module in MAESTRO, describing the ML process,
and the chosen ML algorithm. Section 5.3 presents the medium access control method con-
sidered in MAESTRO. Section 5.4 defines the evaluation metrics and discuss the achieved
results for both classification and prioritization modules. Finally, we present our final re-
marks in Section 5.5.
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5.1 System Overview

To contextualize this experiment, we consider the environment of a Health Park
defined as a public space to promote preventive medicine initiatives [77]. In this environ-
ment, monitored patients and community citizens share the park facilities, including a
WiFi network. We assume that community members use the network access for transmit-
ting data such as voice, video, and web navigation to the internet. Patients are individuals
requiring continuous monitoring. In this context, the patients might wear multiple loMT
sensing devices. The sensing devices transmit the physiological information to a smart-
phone operating as a gateway. Afterward, the gateway sends the data via the existing
network infrastructure to a cloud server. Moreover, IoMT applications have strict data

packet delivery and traffic delay requirements to ensure accurate information for medical
staff [21, 22].

According to the patient’s condition, the physiological data from the IoMT device
add insights with distinct relevance for the diagnostic point of view [21]. The medical
staff might indicate the significance of the physiological data for the therapy. Thus,
heartbeat rate and blood pressure might be of high priority for a patient with a cardio
condition. Alternatively, respiratory rate and oxygen saturation might be relevant for
patients with pulmonary disease. Hence, the algorithm proposed in MAESTRO considers
this information from the medical staff for the transmission priority assignment.

For IoMT applications, it is essential to classify the different medical traffic data
transmitted from sensing devices in a shared wireless infrastructure [21]. Thus, MAE-
STRO runs the classification and prioritization modules, as shown in Figure 12. Notably,
physiological information collected in IoMT devices such as ECG, blood pressure, respi-
ration, and CO2 has distinct morphologies and sample rates. Figure 13 [78] illustrates
the differences of ECG, arterial blood pressure, pulmonary artery pressure, central venous
pressure, respiration, and CO2 rate obtained in Physionet databank [78]. The classifica-
tion module identifies the vital sign based on the stream morphology, using a machine
learning semi-supervised model running in the [oMT gateway. Afterward, based on the
medical requirements and the significance during patient monitoring, MAESTRO assigns
a target class with the desired transmission priority, without disclosing the patient’s iden-
tity. The prioritization module designates a different network access category in the MAC
layer based on the target classes. Thus, the prioritization module balances the data traffic
in the EDCA access categories in the WiFi network. Next, we detail the classification
and prioritization modules.

5.2 Classification Module

The medical crew assisting a patient defines the therapy according to the patient’s
condition. During anamnesis, the physician decides which physiological information or
medical examination is relevant to investigate the patient’s health. The MAESTRO
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In this sense, the medical crew defines

MAESTRO system uses this information to label a physiological stream with the required

transmission priority. The correct evaluation of the dataset is essential for the model’s

final result. Initial data inspection allows patterns and trends detection with descriptive
statistics, visualization, and many other techniques. The results from the data analysis
help to define the features that add more information for the problem resolution.
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For the rest of this analysis, our work considers the dataset provided by the
The Massachusetts General Hospital-Marquette Foundation (MGH-MF) on the Physionet
Databank [78]. This dataset counts for 250 recordings of 3-lead ECG, Arterial Blood
Pressure (ABP), Pulmonary Artery Pressure (PAP), Central Venous Pressure (CVP),
respiration, and airway CO2 signals from patients in critical care units. After visual
inspection, we identify anomalies in physiological data such as:

i) patients diverge in terms of the sensor data, i.e., the dataset does not present the same
physiological information for all patients.

i1) missing sensor data, i.e., some of the physiological datasets present measurement errors
after some time.

iii) sensors calibration and motion artifacts caused high noise levels in the initial and final
segments of some streams.

Initially, this work assumes that MAESTRO will classify a balanced dataset. In
this sense, we consider only patients with complete physiological data to address the
anomaly 7. Following, we solve anomalies (i) and (7ii) framing the physiological informa-
tion with epochs of 1-second duration, eliminating the segments with abnormalities. To
increase the dataset dimension, we concatenate the consecutive periods without overlap-
ping, as illustrated in Figure 13 red frames. In this way, this work extracts the morpho-
logical waveforms from the physiological data to preserve the raw data for transmission.
In this context, we buffer one second of physiological data from the IoMT sensing de-
vice, perform the feature selection, classify the information, assign the required priority
in the data segment, and push the information to the prioritization module. Hence, the
classification module does not insert a long processing delay before data transmission.

The literature refers to the ML process as supervised, unsupervised, or semi-
supervised learning. On the one hand, supervised learning relates to classification and
regression, requiring a set of labeled data to train the algorithms. A target class in the
dataset contains the label that can be either categorical for classification or numerical
for regression. On the other hand, unsupervised learning refers to clustering over a not-
labeled dataset. Typically, the ML model creates clusters of similar information in the
dataset. Finally, semi-supervised lies in between the latest two and consists of applying
labels to a small dataset, training a model, and using the resultant model to tag a broader
set. Hence, this work labeled a small dataset with the required priority and used a semi-
supervised ML model to identify and assign priorities to a larger dataset. Applying
the semi-supervised modeling adapts MAESTRO to classify the physiological data with
different preferences for each patient.

Pawar and Mohammad [22] review the QoS metrics for data transmission in the
context of a mobile patient’s monitoring. The authors compile the requirements in terms of
data rate, maximum delay, and maximum bit error rate based on the physiological sensor.
Additionally, the authors define how critical is each physiological information according
to the amount of data generated by the sensor. For the modeling of MAESTRO, our work
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considered the significance of the physiological data derived from Pawar and Mohammad
[22] as an exhibit in Table 11. The significance determined the required transmission
priority.

Table 11: Importance assignment of physiological signs

SIGNIFICANCE
SENSOR [22] | This Research
ECG Medium High
EEG High High
Blood Pressure Low Medium
Respiration Low Low
SpO2 Low -
Accelerometer Low -
Sound Diagnostic Medium -

Medical Imaging (uncompressed) | Medium -
Medical Imaging (ROI JPEG) Medium -

Video Medium -
CcO2 - Low
Pulmonary Pressure - Medium
Central Venous Pressure - Medium

We evaluate the classification module using algorithms based on probabilistic,
tree, and distance methods. After considering Accuracy and Kappa as criteria, the clas-
sification function embedded in MAESTRO implements an NB probabilistic algorithm to
classify the incoming traffic from [oMT devices and assign a required transmission prior-
ity. We propose the NB algorithm since it presented higher Accuracy and Kappa when
compared with DT and KNN. As explained in Chapter 4, the NB algorithm derives from
the conditional probability theory [64], where NB associates the probability of an event
B to occur based on previous knowledge of an event A, as shown in Eq. 4.5.

5.3 Prioritization Module

In our research, the MAESTRO classification module classifies and labels the
physiological data flows received from the IoMT devices. The labels reflect the significance
of this vital sign data for the diagnostic. Hence, critical physiological information for the
diagnostic requires higher transmission priority in the wireless network. Thus, we propose
an adaptive medium access scheme to prioritize data transmission from IoMT devices to
the cloud servers.

In the latest IEEE 802.11 amendment, the most adopted QoS strategy is EDCA.
Notably, the EDCA parameters define four queues to control the medium access in the
wireless channel: AC_BK, AC_BE, AC_VI, and AC_VO, respectively, background, best
effort, video, and voice. According to the amendment, the access point shall announce
the EDCA parameters [36]. When the transmitting station is a sensor device, each AC
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queue assumes the settings expressed in Table 12 for CW, AIFSN, and TXOP. The
MAESTRO prioritization module uses the tag assigned in the classification module to
match the required access category to grant better QoS for IoMT devices following the
algorithm 1. The ML module assigns the required priority in the first field of the stream.
Hence, the prioritization module retrieves this information and push the data stream to
a corresponding EDCA queue. For high priority medical data, the prioritization module
drives the flow in the AC_VO queue. For medium priority, the flow goes to the AC_VI
queue.

Algorithm 1 MAESTRO - prioritization module
Require: Incoming traffic
Ensure: prioritization by traffic type

1: procedure IOMTCHECK

2: if Incolraf then > Incame IoMT traffic
3: dataStream < machineLearning(IncoTraf) > Predicts traffic type and assign
QoS to dataStream
4: myPriority < dataStream[0] > Read Priority Requirement
5: if myPriority then
6: switch[myPriority] > Assign AC and user priority
7 case 1: dataStream.AC:= AC_VO; tid:=7; break;
8:
9: case 2: dataStream.AC:= AC_VI; tid:=5; break;
10:
11: case 3: dataStream.AC:= AC_BE; tid:=3; break;
12:
13: swEnd
14: else > Reduces priority of other traffic types
15: switch[AC]
16: case AC_VO: tid:=6; break;
17:
18: case AC_VI: tid:=4; break;
19:
20: case AC_BE: tid:=3; break;
21:
22: swEnd
Table 12: Set of EDCA parameters, if STA is a sensor device
‘ AC ‘ CWmin ‘ CWmax ‘AIFSN‘TXOP limit‘Priority‘MASTRO Queues‘
ACBK aCWmin aCWmax 7 0 1or2 —
AC BE aCWmin aCWmax 2 0 0or3 Low
AC_VI|(aCWmin+1)/2-1 aCWmin 5 0 4orbH Medium
AC_VO|(aCWmin+1)/4-1|(aCWmin+1)/2-1| 4 0 6or7 High

In this work, we expand the concept explored in Vergutz et al. [17], concerning
the AIFSN and CW parameters to transmit IoMT data. Also, we advance the strategy
described in Kim et al. [12] on delaying background traffic to improve QoS for IoMT
applications. Finally, we explore the conclusion from Patel and Choudhary [56], on bal-
ancing the traffic between three queues. Our approach does not depend on the congestion
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level in the network. However, the simulation admits that the background traffic from
internet station devices compromises 50% of the WiFi access point capacity.

5.4 Evaluation

To evaluate the MAESTRO effectiveness, we need to review the traffic classifica-
tion and the prioritization modules individually. We implement the classification module
in the R language, whereas we assess the network performance for prioritization through
simulations in NS-3. As described in Chapter 4, the literature refers to precision-recall
and accuracy-kappa, among others, as evaluation criteria for ML algorithms. The evalua-
tions of the prioritization module considered the packet delivery ratio and network delay
metrics as reference. Next, we detail the MAESTRO’s implementation and evaluation.

5.4.1 Classification Module

The IoMT systems prefer sensors that measure vital signs, such as sensing of
heartbeat, respiratory rates, pulse, blood pressure, and blood oxygen, crucial to deter-
mining the patient’s health condition. Baker et al. [31] recommend to transfer raw data
to the cloud servers. This recommendation suggests preserving as much information as
possible for medical diagnostic. In this way, we consider the transmission of epochs with
a one-second duration of raw physiological data.

For testing the MAESTRO system, we consider the MGH-MF dataset from the
Physionet Databank [78], which contains physiological data from 250 patients monitored
at the Massachusetts General Hospital. To address the issue listed in Section 5.2, we
selected one hour of sensing data collected from 39 patients who displayed eight phys-
iological measurements. We analyzed physiological data from patients with complete
datasets for ECG (in three channels), arterial, pulmonary, central venous pressures, 02,
and CO2 saturation.

To generate the data frame for classification, we proceed as follows. Initially,
we define an observation window with one second of duration. This observation window
buffers the physiological stream to select the segments for analysis. Then, we eliminated
the anomalies associated with the sensor’s calibration and motion artifacts in the initial
and final sections of the physiological streams by advancing the observation window.
Thus, the segments selected for analysis comes from the middle of the physiological data
collection, when the signal is more stabilized. Following, we concatenate ten epochs of
one-second duration from each physiological measurement. We repeat the process ten
times to increase the data frame dimensions. According to this procedure, we provided
a clean data frame for the ML model with 3120 examples of physiological data with ten
seconds for each instance.

We follow the ML implementation available in the caret package in the R language
version 3.5.1. In this implementation, we assess the Accuracy and Kappa for NB, DT,
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and KINN, respectively, a probabilistic, a tree, and a distance-based algorithm. This
assessment proposes identifying the best approach to recognize the physiological stream.
To train and test the ML algorithms, we split the dataset into three equally distributed
subsets. We train the algorithms using one-third of the dataset in a cross-validation 20-
fold strategy. Next, we test the model’s generalization capabilities using the second-third
subset.

The classification module uses a semi-supervised process. First, we inspect and
assigned the required transmission prioritization for each physiological example in the
data frame. We consider the tuples sensor versus the prioritization expressed in Table
11. Hence, we established the priorities as HIGH, MEDIUM, and LOW according to our
previous knowledge from the physiological data. For this experiment, we consider ECG
and EEG high priority streams; the pressure measurements such as blood and pulmonary
pressures are medium priority streams; respiration and CO2 receive low priority.

Figures 14 and 15 show the accuracy and kappa results for the three evaluated
classifiers. All three evaluated ML algorithms achieved accuracy above 70%, but the
probabilistic model, i.e., the NB adapted better, achieving 91.5% accuracy. However,
as explained in Chapter 4, the accuracy requires complementary information to conclude
the analysis. In this sense, the kappa results show that only the NB algorithm performed
above 0.8, which is considered almost perfect as an exhibit in Table 7. After evaluating
the results in the train-test phase, we implement the NB algorithm in the MAESTRO
classification module. Finally, we use the NB model to label the third subset, assigning
the required priority, and transmitting the physiological data to the central server.
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Figure 14: Accuracy in identifying the physiological streams
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Figure 15: Kappa in identifying the physiological streams

5.4.2 Prioritization Module

For the network performance, we consider the PDR and network transmission
delay as evaluation metrics. The PDR reflects the percentage of packets successfully
transmitted from one node to another, in our simulation, from the gateway to the WiFi
access point. The network transmission delay expresses the delay in milliseconds for a
node to transmit a data packet and receives the respective acknowledgment from the
receiving end. In our simulation scenario, the transmission delay considers only the air
time in the wireless interface.

To evaluate our prioritization module, we simulated MAESTRO in NS-3. The
simulator allows variations of topology and technologies, serving well for this investiga-
tion. To set up the simulation, we considered the IoMT devices surrounding the gateway
forming a two-meter radius circle. We positioned the generic STA in a five-meter radius
circle around the WiFi access point. The IoMT gateway and the WiFi access point are ten
meters close to each other. Additionally, we placed the Hospital LAN node twenty-five
meters away from the WiFi router.

Figure 16 exhibits the monitoring scenario. IoMT devices continuously collect
patient’s physiological information in Tier 1 and send data to the gateway in Tier 2. The
gateway competes for medium access in the WiFi network with other generic STA to
transmit the information to the hospital LAN server in Tier 3. We define the simulation
scenario with five [oMT sensing devices per patient. We consider the number of monitored
patients varying from 1 to 4. Thus, the number of [oMT devices ranges from 5 to 20 around
the gateway. Simultaneously, we change the quantities of generic STA from 10 to 25. For
each network configuration, we execute 30 rounds of simulations turning MAESTRO On
and Off. We establish a background network traffic corresponding to 50% of the WiFi
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Figure 16: Three tier architecture for the prioritization module.

channel capacity, and three traffic profiles for the background, named voice, video, and web
navigation. For generating competition for the medium in the WiFi network, we consider
the three background traffic profiles adjusting to the AC_VO, AC_VI, and AC_BE in the
EDCA queues. The AC_MD queue computes the traffic statistics from [oMT devices. In
this context, we stressed the network behavior and captured the mean values for PDR
and Delay.

Figure 17(a) shows the PDR under the network in a standard configuration, i.e.,
without MAESTRO. The results without MAESTRO indicates that when the number
of devices increases, the background traffic prevails over the IoMT traffic expressed in
AC_MD. The EDCA QoS scheme grants more air time to Voice, Video, and web navi-
gation, i.e., AC_VO, AC_VI, AC_BE, respectively. When the network traffic increases,
congestion causes packets to be dropped and lost. In an IoMT application scenario, there
is a high risk that packet loss distorts the physiological information reaching the hospital
server biasing the diagnostic procedures. In this scenario, the physiological data traffic
competes in the best effort privileges. Thus, physiological data traffic exhibit in the curve
of AC_MD receives a lower priority resulting in 35% lower PDR compared with Voice for
45 devices.

Figure 17(b) presents the PDR under the network considering MAESTRO. In
our simulation, the prioritization module reduces the PDR for Voice, Video, and Internet
traffic by 28%, 5%, and 5%, respectively. The results confirm that it is possible to increase
the PDR in 60% for the IoMT device, as depicted in the AC_MD graphic. In this way,
MAESTRO achieved higher efficiency since it modifies the EDCA parameters to grant
more air time to IoMT data traffic. Effectively, MAESTRO reduces air time from the
background traffic, e.g., Voice, Video, and web navigation, distributes the physiological
data traffic in three different queues, and finally sets the EDCA parameters equivalent to
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AC_VO, AC_VI, and AC_BE for physiological data according to the required priority.

Figure 17(c) displays the PDR considering the traffic only for IoMT devices.
In this scenario, the figure compares the traffic curve behavior considering or not the
MAESTRO. These results complement the performance evidence, clearly showing the
system’s efficiency against a standard configuration, improving PDR for IoMT devices
in 60%. The ML algorithm to classify physiological data packages, combined with the
algorithm to assign the data flow to different network access categories in the MAC layer
embedded in MAESTRO, grants the improvement.
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Figure 17: PDR with and without MAESTRO considering different number of devices

Figure 18 shows the traffic delay only for IoMT devices, in the network sce-
nario with and without MAESTRO. Analyzing the results, we conclude that MAESTRO
reduced the traffic delay for IoMT devices compared to the transmission without MAE-
STRO. Accurately, the IoMT device’s traffic transmitted without MAESTRO does not
have any mechanism to prioritize this traffic compared to other generic traffic types. As
discussed throughout this work, prioritization is fundamental since IoMT applications
have strict requirements in terms of data delivery and delay to ensure accurate informa-
tion for medical staff.
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5.5 Final Remarks

We present the MAESTRO system for medical device management to improve
QoS for IoMT applications. MAESTRO applies a machine-learning algorithm to inspect
the network data packets and identify the physiological information it holds. Additionally,
the machine-learning module tags a priority to the physiological data. Next, a prioriti-
zation algorithm associates this priority with an equivalent access category in the WiFi
network. Simulations determined that MAESTRO achieved 91.5% accuracy and 0.869
of Kappa in identifying and tagging the physiological data. The network simulations
confirmed 60% of improvement in PDR compared to a standard transmission. Although
presenting promising achievements for PDR, MAESTRO still requires improvement for
the delay. As seen in Figure 18, there is an unexplained behavior in traffic delay when the
network is serving 25 devices with MAESTRO. The prioritization scheme needs revision
to address this issue, including scenarios with higher levels of network congestion.
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CHAPTER 6

Conclusion

The increasing popularity of wearable devices such as smartwatches and wrist
bands enhances the user’s experience [4]. Wearable devices combined with mobile applica-
tions deliver solutions that a smartphone alone can not provide. These devices constitute
the subjects of the IoT and thousands of IoT devices are already connected in the network
[2]. The introduction of wearable devices for healthcare is a reality, with several state-of-
the-art products available in the market, such as the Apple Watch 5, Samsung Galaxy
Watch 3, and Xiaomi Mi Band 5. The IoMT associates IoT devices with healthcare ap-
plications. In this context, the introduction of ML methods to assist clinical diagnosis
receives great attention from academy and industry [20, 27, 7, 15]

The IoMT applications are an alternative for monitoring patients with chronic
conditions like epilepsy [15]. In this architecture, a wearable device continuously collects
the user’s physiological information, transfers the user data to a smartphone or gateway,
and at the latest stage, the physiological information reaches a central server for process-
ing. In this context, it is imperative to guarantee the proper QoS for such applications.
For better efficiency, the IoMT applications require low latency and reliable network [2].
Additionally, continuous patient monitoring requires a broadband channel to transfer data
to a central server.

In this work, we demonstrate that processing the clinical diagnostic near the
patient, e.g., in a smartphone acting as a gateway, improves the application QoS. An ML
algorithm processing physiological data in the fog with low computational complexity
provides the IoM solution with availability, reliability, and low latency required in such
an application. Moreover, after diagnostic in the fog, it is equally essential that the
physiological condition reach the medical crew in the hospital as fast as possible, with
high PDR and minimum delay. This work proposes a potential solution to address this
problem using ML.
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6.1 Main Contributions and Thesis Summary

Our research considers that physiological data processing near the IoMT device,
1.e.in the fog, minimizes the risk of compromising the data integrity, reducing the odds
of missing something significant for the patient’s therapy. Thus, fog processing requires
transferring only the diagnostic data instead of all the physiological information. In this
sense, we analyze the ML algorithms in the context of an [oMT application providing high
accuracy in detecting epileptic seizures with low computational complexity. Moreover, we
confirm that using an ensemble classifier enhances the ML model’s efficiency. Based
on the results, this research concludes that RF fulfills the required accuracy, the low
computational complexity for an IoMT application, and fits well as an ensemble classifier
to detect epileptic seizures.

Concerning data transmission, physiological information requires higher QoS lev-
els to reach the medical crew with minimum delay. Our work develops the concepts for
a transmission coordinator - the MAESTRO. In this proposal, the coordinator identifies
the physiological traffic pattern originated in the IoMT device, assigns a tag associated
with the required QoS, and provides higher transmission priority to the [oMT application.
MAESTRO uses EDCA queues in the WiFi network to prioritize the physiological traffic,
identifying the physiological stream with minimum delay.

Our main contribution is a framework that includes a clinical diagnostic for a
chronic condition combined with traffic identification and prioritization. The concept
is to assist medical crew outside hospital premises, allowing the patient’s continuous
monitoring. Moreover, our proposal is flexible, with both clinical diagnostic and traffic
prioritization adaptable to an individual’s medical condition. The epileptic seizure detec-
tion model requires only 10 seconds of EEG data to classify and detect a seizure. The
traffic identification and prioritization module require only 1 second of physiological data
to fulfill the classification.

6.2 Outlook

For the sequence of this research, we need to enhance the solution performance
and link the ends. For the epileptic seizure detection, we will investigate other features in
time-domain extracted from the EEG to provide higher information gain to the classifica-
tion model. Additionally, we will develop a combination with the characteristics derived
from the ECG. Specifically, the ECG provides characteristics allowing user’s authentica-
tion and epileptic seizure detection. In this context, a combination of EEG and ECG
for seizure detection and ECG for patient identification possibly enhances the system ac-
curacy. Furthermore, the ensemble classifier is a potential solution to enhance accuracy
combining ECG and EEG features. Finally, we will develop MAESTRO to process the
end-to-end information in the following sequence:

1) receive the data streams
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2) recognizes the characteristics of physiological information on the data stream.

3) use this information for clinical diagnostic, i.e., epileptic seizure detection and user
authentication

4) prioritize the transmission of the diagnostic information, even when the network is
congested.

6.3 Published work

The main results obtained in this Ph.D. thesis were published in Resque et al.
[15, 79] in the following events:

1. [15] - P. Resque, A. Barros, D. Rosdrio, and E. Cerqueira, “An investigation of
different machine learning approaches for epileptic seizure detection,” In Proceedings
of the 15th International Wireless Communications & Mobile Computing Conference
(IWCMC), Tangier, Morocco, 2019, pp. 301-306.

2. [79] - P. Resque, S. Pinheiro, D. Rosério, E. Cerqueira, A. Vergutz, M. Nogueira,
and A. Santos, “Assessing data traffic classification to priority access for wireless
healthcare application,” In Proceedings of the IEEE Latin-American Conference on
Communications (LATINCOM), Salvador, Brazil, 2019, pp. 1-6.

Complementary results were published in Santos et al. [80], Barros et al. [75],
and Cerqueira et al. [81] in the following events:

1. [80] - A. Santos, I. Medeiros, P. Resque, D. Rosério, M. Nogueira, A. Santos, E.
Cerqueira, and K. R. Chowdhury, “ECG-based user authentication and identifica-
tion method on VANETS,” in Proceedings of the 10th Latin America Networking
Conference (LANC), Sao Paulo, Brazil, 2018, pp. 119-122

2. [75] - A. Barros, D. Rosério, P. Resque, and E. Cerqueira, “Heart of [oT: ECG as
biometric sign for authentication and identification,” In Proceedings of the 15th In-
ternational Wireless Communications & Mobile Computing Conference (IWCMC),
Tangier, Morocco, 2019, pp. 307-312.

3. [81] - E. Cerqueira, P. Resque, I. Medeiros, L. Bastos, A. Santos, T. Tavares, D.
Rosario, A. Santos, and M. Nogueira, “Autenticacao usando sinais biométricos: Fun-
damentos, aplicacoes e desafios.” anais da Jornada de Atualizacao em Informaética
(JAI) do XXXIX Congresso da Sociedade Brasileira de Computacao (CSBC 2019).
SBC, June 2019, pp. 149-19

4. [76] - A. Barros, P. Resque, J. Almeida, R. Mota, H. Oliveira, D. Rosério, and E.
Cerqueira, ”Data Improvement Model Based on ECG Biometric for User Authenti-
cation and Identification”. Sensors, vol. 20, no. 10, p. 2920, 2020.
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